718 resultados para 113-690


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concentration of dissolved Sr and the distribution of 87Sr/86Sr isotope ratios in Leg 113 interstitial waters may be interpreted in terms of mixing of Sr from four different reservoirs: indigenous seawater, marine carbonate minerals, and basaltic and siliceous detrital material. The input to the pore water from these reservoirs is determined by the reactivity of the reservoir rather than its size. The presence of strontium derived from siliceous detrital material is unequivocally demonstrated in the pore waters of the hemipelagic deposits, and is also significant in the calcareous Maud Rise sediments due to the unusually low degree of carbonate recrystallization. Also, alteration of basic volcanic material is important at several sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paleogene stable oxygen and carbon isotopes were measured in formainifera from ODP Sites 689 and 690 at Maud Rise in the Atlantic Ocean sector of the Southern Ocean, and from Sites 738, 744, 748 and 749 at the southern Kerguelen Plateau in the Indian Ocean sector. These data were compared with sedimentological data from the same sample set. Both benthic and planktic d18O values document a cooling trend beginning around 49.5 Ma at all sites. During the late middle Eocene planktic d18O values indicate a steepening latitudinal temperature gradient from 14°C at the northern sites towards 10°C at the southernmost sites. Terrigeneous sand grains of probably ice rafted origin and clay mineral assemblages point to the existence of a limited East Antarctic ice cap with some glaciers reaching sea level as early as middle Eocene time around 45.5 Ma. Between 45 and 40 Ma, average paleotemperatures were between 5° and 7°C in deep and intermediate water masses, while near-surface water masses ranged between 6° and 10°C. During the late Eocene, between 40 and 36 Ma, average temperatures further decreased to 4°-5°C in the deep and intermediate water masses and to 5°-8°C near the sea surface. Abruptly increasing d18O values at approximately 35.9 Ma exactly correlate with a sharp pulse in the deposition of ice-rafted material on the Kerguelen Plateau, a dramatic change in clay mineral composition, and an altered Southern Ocean circulation indicated by a differentiation of benthic d13C values between sites, increasing opal concentrations and decreasing carbonate contents. For planktic and benthic foraminifera this d18O increase ranges between 1.0 and 1.3 per mil, and between 0.9 and 1.4 per mil, respectively. We favour a hypothesis that explains most of the d18O shift at 35.9 Ma with a buildup of a continental East Antarctic ice sheet. Consequently, relatively warm Oligocene Antarctic surface water temperatures probably are explained by a temperate, wet-based nature of the ice sheet. This would also aid in the fast build-up of an ice sheet by enhancing the moisture transport on to the continent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Size measurements of the calcareous nannofossil taxon Discoaster multiradiatus were carried out across the Paleocene-Eocene Thermal Maximum (PETM) in Ocean Drilling Program Holes 690B (Maud Rise, Weddell Sea) and 1209B (Shatsky Rise, Pacific Ocean). Morphometric investigations show that D. multiradiatus specimens are generally larger at ODP Site 1209 than at ODP Site 690. A limited increase in size of D. multiradiatus is recorded at ODP Site 1209, whereas significant enlargements characterize ODP Site 690. Preservation is comparable at both sites: nannofossils are moderately preserved with some evidence of etching/overgrowth in the PETM interval. Yet, D. multiradiatus variations do not correlate with preservation state and morphometric data most likely represent primary signals rather than diagenetic artifacts. There is a direct relationship between D. multiradiatus size and paleotemperatures: largest specimens are coeval with global warming associated with the PETM, inferred to result from excess atmospheric CO2 due to (partial) oxidation of massive quantities of methane. Size increases and largest specimens of D. multiradiatus occur at different stratigraphic levels within PETM at ODP Sites 690 and 1209. A marked shift in diameter size was observed at the onset and peak of the Carbon Isotopic Excursion (CIE) at ODP Site 690, but only at the end of CIE and initial recovery interval at ODP Site 1209. This diachroneity is puzzling, but indeed correlates well with reconstructed changes in surface and thermocline water masses temperature and salinity in the PETM interval at low and high latitudes. The presumed high concentrations of carbon dioxide seem to have not influenced the morphometry of D. multiradiatus. The major size increase of D. multiradiatus in the CIE of ODP Site 690 could represent the migration of larger-sized allochtonus specimens that moved from peri-equatorial/subtropical areas to higher latitudes during the warmest interval of the PETM, although no direct evidence of distinct populations/subpopulations has been obtained from the frequency diagrams. As a result, we infer that D. multiradiatus is a proxy of water masses stratification and might be used for deriving temperature-salinity-nutrient conditions in the mixed layer and thermocline and their dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early Paleogene warm climates may have been linked to different modes and sources of deepwater formation. Warm polar temperatures of the Paleocene and Eocene may have resulted from either increased atmospheric trace gases or increased heat transport through deep and intermediate waters. The possibility of increasing ocean heat transport through the production of warm saline deep waters (WSDW) in the Tethyan region has generated considerable interest. In addition, General Circulation Model results indicate that deepwater source regions may be highly sensitive to changing basin configurations. To decipher deepwater changes, we examined detailed benthic foraminiferal faunal and isotopic records of the late Paleocene through the early Eocene (~60 to 50 Ma) from two critical regions: the North Atlantic (Bay of Biscay Site 401) and the Pacific (Shatsky Rise Site 577). These records are compared with published data from the Southern Ocean (Maud Rise Site 690, Islas Orcadas Rise Site 702). During the late Paleocene, similar benthic foraminiferal delta18O values were recorded at all four sites. This indicates uniform deepwater temperatures, consistent with a single source of deep water. The highest delta13C values were recorded in the Southern Ocean and were 0.5 per mil more positive than those of the Pacific. We infer that the Southern Ocean was proximal to a source of nutrient-depleted deep water during the late Paleocene. Upper Paleocene Reflector Ab was cut on the western Bermuda Rise by cyclonically circulating bottom water, also suggesting a vigorous source of bottom water in the Southern Ocean. A dramatic negative excursion in both carbon and oxygen isotopes occurred in the latest Paleocene in the Southern Ocean. This is a short-term (<100 kyr), globally synchronous event which also is apparent in both the Atlantic and Pacific records as a carbon isotopic excursion of approximately 1 per mil. Faunal analyses from the North Atlantic and Pacific sites indicate that the largest benthic foraminiferal faunal turnover of the Cenozoic was synchronous with the isotopic excursion, lending support to the hypothesis that the extinctions were caused by a change in deepwater circulation. We speculate that the Southern Ocean deepwater source was reduced or eliminated at the time of the excursion. During the early Eocene, Southern Ocean delta13C values remained enriched relative to the North Atlantic and Pacific. However, the Southern Ocean was also enriched in delta18O relative to these basins. We interpret that these patterns indicate that although the Southern Ocean was proximal to a source of cool, nutrient-depleted water, the intermediate to upper deep water sites of the North Atlantic and Pacific were ventilated by a different source that probably originated in low latitudes, i.e., WSDW.

Relevância:

20.00% 20.00%

Publicador: