761 resultados para ð18O


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface and deepwater paleoclimate records in Irminger Sea core SO82-5 (59°N, 31°W) and Icelandic Sea core PS2644 (68°N, 22°W) exhibit large fluctuations in thermohaline circulation (THC) from 60 to 18 calendar kyr B.P., with a dominant periodicity of 1460 years from 46 to 22 calendar kyr B.P., matching the Dansgaard-Oeschger (D-O) cycles in the Greenland Ice Sheet Project 2 (GISP2) temperature record [Grootes and Stuiver, 1997, doi:10.1029/97JC00880]. During interstadials, summer sea surface temperatures (SSTsu) in the Irminger Sea averaged to 8°C, and sea surface salinities (SSS) averaged to ~36.5, recording a strong Irminger Current and Atlantic THC. During stadials, SSTsu dropped to 2°-4°C, in phase with SSS drops by ~1-2. They reveal major meltwater injections along with the East Greenland Current, which turned off the North Atlantic deepwater convection and hence the heat advection to the north, in harmony with various ocean circulation and ice models. On the basis of the IRD composition, icebergs came from Iceland, east Greenland, and perhaps Svalbard and other northern ice sheets. However, the southward drifting icebergs were initially jammed in the Denmark Strait, reaching the Irminger Sea only with a lag of 155-195 years. We also conclude that the abrupt stadial terminations, the D-O warming events, were tied to iceberg melt via abundant seasonal sea ice and brine water formation in the meltwater-covered northwestern North Atlantic. In the 1/1460-year frequency band, benthic ?18O brine water spikes led the temperature maxima above Greenland and in the Irminger Sea by as little as 95 years. Thus abundant brine formation, which was induced by seasonal freezing of large parts of the northwestern Atlantic, may have finally entrained a current of warm surface water from the subtropics and thereby triggered the sudden reactivation of the THC. In summary, the internal dynamics of the east Greenland ice sheet may have formed the ultimate pacemaker of D-O cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediment core logs from six sediment cores in the Labrador Sea show millennial-scale climate variability during the last glacial by recording all Heinrich events and several major Dansgaard-Oeschger cycles. The same millennial-scale climate change is documented for surface-water d18O records of Neogloboquadrina pachyderma (left coiled); hence the surface-water d18O record can be derived from sediment core logging by means of multiple linear regression, providing a paleoclimate proxy record at very high temporal resolution (70 yrs). For the Labrador Sea, sediment core logs contain important information about deep-water current velocities and also reflect the variable input of IRD from different sources as inferred from grain-size analysis, benthic d18O, the relation of density and p-wave velocity, and magnetic susceptibility. For the last glacial, faster deep-water currents which correspond to highs in sediment physical properties, occurred during iceberg discharge and lasted for a several centuries to a few millennia. Those enhanced currents might have contributed to increased production of intermediate waters during times of reduced production of North Atlantic Deep Water. Hudson Strait might have acted as a major supplier of detrital carbonate only during lowered sea level (greater ice extent). During coldest atmospheric temperatures over Greenland, deep-water currents increased during iceberg discharge in the Labrador Sea, then surface water freshened shortly after, while the abrupt atmospheric temperature rise happened after a larger time lag of >=1 kyr. The correlation implies a strong link and common forcing for atmosphere, sea surface, and deep water during the last glacial at millennial time scales but decoupling at orbital time scales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In situ secondary ionization mass spectrometry (SIMS) analyses of oxygen isotopes in authigenic calcite veins were obtained from an active thrust fault system drilled at Ocean Drilling Program (ODP) Site 892 (44°40.4'N, 125°07.1'W) along the Cascadia subduction margin. The average d18OPDB value of all samples is -9.9 per mil and the values are the lowest of any measured in active accretionary prisms. Ranges in individual veins can be as much as 19.6 per mil. There is an isotopic stratigraphy related to the structural stratigraphy. Mean isotope values in the hanging wall, thrust, and footwall are -14.4 per mil, -9.5 per mil, and -5.2 per mil, respectively. Several veins and crosscutting vein sequences show a general trend from lower to higher d18O values over time. Isotopic and textural data indicate several veins formed by a crack-seal mechanism and growth into open fractures. The best explanation for the strong 18O depletions is periodic rapid flow from 2-3 km deeper in the prism. Relatively narrow isotopic ranges for most veins suggest that fluids were derived from a similar source depth for each episode of fluid pulse and calcite crystallization. Structural and mass balance considerations are consistent with a record preserved in the veins of ten to hundreds of thousands of years. The fluid pulses may relate to periodic large earthquake events such as those recognized in the paleoseismicity records from the Cascadia margin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An intensive mineralogic and geochemical investigation was conducted on sediments recovered during Ocean Drilling Program Leg 166 from the western Great Bahama Bank at Sites 1006, 1008, and 1009. Pleistocene through middle Miocene sediments recovered from Site 1006, the distal location on the Leg 166 transect, are a mixture of bank-derived and pelagic carbonates with lesser and varying amounts of siliciclastic clays. A thick sequence of Pleistocene periplatform carbonates was recovered near the platform edge at Sites 1008 and 1009. Detailed bulk mineralogic, elemental (Ca, Mg, Sr, and Na), and stable isotopic (d18O and d13C) analyses of sediments are presented from a total of 317 samples from all three sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we present a paleoceanographic reconstruction of the southwestern South Atlantic for the past 13 kyr based on faunal and isotopic analysis of planktonic foraminifera from a high-resolution core retrieved at the South Brazil Bight continental slope. Our record indicates that oceanographic changes in the southwestern South Atlantic during the onset of the Holocene were comparable in strength to those that occurred during the Younger Dryas. Full interglacial conditions started abruptly after 8.2 kyr BP with a sharp change in faunal composition and surface hydrography (SST and SSS). Part of the observed events may be explained in terms of changes in thermohaline circulation while the other part suggests a dominant role of winds. Our data indicate that during the Early Holocene upwelling was significantly strengthened in the South Brazil Bight promoting high productivity and preventing the establishment of the typically interglacial menardiiform species. In general terms, oceanographic changes recorded by core KF02 occurred in synchrony with Antarctica's climate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Middle Eocene Climatic Optimum (MECO) is a major transient warming event that occurred at ~ 40 Ma and reversed a long-term cooling trend through the early and middle Eocene. We report the results of a high-resolution, quantitative study of siliceous microfossils at Ocean Drilling Program Sites 748 and 749 (Southern Kerguelen Plateau, Southern Ocean, ~ 58°S) across a ~ 1.4 myr interval spanning the MECO event. At both sites, a significant increase in biosiliceous sedimentation is associated with the MECO event. Rich siliceous planktonic microfossil assemblages in this interval are unusual in that they are dominated by ebridians, with radiolarians as a secondary major component. Silicoflagellates and diatoms comprise only a minor fraction of the assemblage, in contrast to siliceous microfossil assemblages that characterize modern Southern Ocean sediments. Based on our new siliceous microfossil records, we interpret two ~ 300 kyr periods of elevated nutrient availability in Southern Ocean surface waters which span the peak warming interval of the MECO and the post-MECO cooling interval. A diverse assemblage of large silicoflagellates belonging to the Dictyocha grandis plexus is linked to the rapid rise in sea-surface temperatures immediately prior to peak warmth, and a pronounced turnover is observed in both ebridian and silicoflagellate assemblages at the onset of peak warming. The interval of peak warmth is also characterized by high abundance of cosmopolitan ebridians (e.g., Ammodochium spp.) and silicoflagellates (e.g., Naviculopsis spp.), and increased abundance of tropical and subtropical diatom genera (e.g., Asterolampra and Azpeitia). These observations confirm the relative pattern of temperature change interpreted from geochemical proxy data at multiple Southern Ocean sites. Furthermore, rapid assemblage changes in both autotrophic and heterotrophic siliceous microfossil groups indicate a reorganization of Southern Ocean plankton communities in response to greenhouse warming during the MECO event.