614 resultados para uranium 238
Resumo:
Site 1276, Leg 210 of the Ocean Drilling Program, was located on the Newfoundland margin in a seismically-defined ~128 Ma "transitional" crust just west of the presumed oceanic crust, and the M3 magnetic anomaly. The goal of drilling on this non-volcanic margin was to study the rifting, nature of basement, and post-rift sedimentation in the Newfoundland-Iberia rift. Drilling of this 1739 m hole was terminated 90-160 m above basement, in the lower of a doublet of alkaline diabase sills. We have carried out geochemical studies of the sill complex, in the hopes that they will provide proxy information regarding the nature of the underlying basement. Excellent 40Ar/39Ar plateau ages were obtained for the two sills: upper sill ~105.3 Ma; lower sill ~97.8 Ma. Thus the sills are substantially younger than the presumed age of the seafloor at site 1276 (~128 Ma), and were intruded beneath substantial sediment overburden (250 m for the upper, older sill, and 575 m for the lower younger sill). While some of the geochemistry of the sills has been compromised by alteration, the "immobile" trace elements show these sills to be hawaiites, differentiated from an enriched alkaline or basanitic parentage. Sr, Nd and Pb isotopes are suggestive of an enriched hotspot/plume mantle source, with a possible "added" component of continental material. These sills unequivocally were not derived from typical MORB (asthenospheric) upper mantle.
Resumo:
The Gangdese belt, Tibet, records the opening and closure of the Neo-Tethyan ocean and the resultant collision between the Indian and Eurasian plates. Mesozoic magmatic rocks generated through subduction of the Tethyan oceanic slab constitute the main component of the Gangdese belt, and play a crucial role in understanding the formation and evolution of the Neo-Tethyan tectonic realm. U-Pb and Lu-Hf isotopic data for tonalite and granodiorite from the Xietongmen-Nymo segment of the Gangdese belt indicate a significant pulse of Jurassic magmatism from 184 Ma to 168 Ma. The magmatic rocks belong to metaluminous medium-K calc-alkaline series, characterized by regular variation in major element compositions with SiO2 of 61.35%-73.59 wt%, low to moderate MgO (0.31%-2.59%) with Mg# of 37-45. These magmatic rocks are also characterized by LREE enrichment with concave upward trend in MREE on the chondrite-normalized REE patterns, and also LILE enrichment and depletion in Nb, Ta and Ti in the primitive mantle normalized spidergrams. These rocks have high zircon ?Hf(t) values of + 10.94 to + 15.91 and young two-stage depleted mantle model ages (TDM2) of 192 Ma to 670 Ma. The low MgO contents and relatively depleted Hf isotope compositions, suggest that the granitoid rocks were derived from the partial melting of the juvenile basaltic lower crust with minor mantle materials injected. In combined with the published data, it is suggested that northward subduction of the Neo-Tethyan slab beneath the Lhasa terrane began by the Late-Triassic, which formed a major belt of arc-related magmatism.
Resumo:
Silicic Fe-Ti-oxide magmatic series was the first recognized in the Sierra Leone axial segment of the Mid-Atlantic Ridge near 6°N. The series consists of intrusive rocks (harzburgites, lherzolites, bronzitites, norites, gabbronorites, hornblende Fe-Ti-oxide gabbronorites and gabbronorite-diorites, quartz diorites, and trondhjemites) and their subvolcanic (ilmenite-hornblende dolerites) and, possibly, volcanic analogues (ilmenite-bearing basalts). Deficit of most incompatible elements in the rocks of the series suggests that parental melts derived from a source that had already been melted. Correspondingly, these melts could not be MORB derivatives. Origin of the series is thought to be related to melting of the hydrated oceanic lithosphere during emplacement of an asthenospheric plume (protuberance on the surface of large asthenospheric lens beneath MAR). Genesis of different melts was supposedly controlled by ascent of a chamber of hot mantle magmas thought this lithosphere in compliance with the zone melting mechanism. Melt acquired fluid components from heated rocks at peripheries of the plume and became enriched in Fe, Ti, Pb, Cu, Zn, and other components mobile in fluids.
Resumo:
Fossil Mn nodules of Cretaceous age from western Timor exhibit chemical, structural and radioisotope compositions consistent with their being of deep-sea origin. These nodules show characteristics similar to nodules now found at depths of 3,500-5,000 m in the Pacific and Indian Oceans. Slight differences in the fine structure and chemistry of these nodules and modern deep-sea nodules are attributed to diagenetic alteration after uplift of enclosing sediments.
Resumo:
The accumulation of extraterrestrial 3He, a tracer for interplanetary dust particles (IDPs), in sediments from the Ontong Java Plateau (OJP; western equatorial Pacific Ocean) has been shown previously to exhibit a regular cyclicity during the late Pleistocene, with a period of ~100 ka. Those results have been interpreted to reflect periodic variability in the global accretion of IDPs that, in turn, has been linked to changes in the inclination of Earth's orbit with respect to the invariable plane of the solar system. Here we show that the accumulation in OJP sediments of authigenic 230Th, produced by radioactive decay of 234U in seawater, exhibits a 100-ka cyclicity similar in phase and amplitude to that evident in the 3He record. We interpret the similar patterns of 230Th and 3He accumulation to reflect a common origin within the ocean-climate system. Comparing spatial and temporal patterns of sediment accumulation against regional patterns of biological productivity and against the well-established pattern of CaCO3 dissolution in the deep Pacific Ocean leads to the further conclusion that a common 100-ka cycle in accumulation of biogenic, authigenic and extraterrestrial constituents in OJP sediments reflects the influence of climate-related changes in sediment focusing, rather than changes in the rate of production or supply of sedimentary constituents.
Resumo:
Oceanic zircon trace element and Hf-isotope geochemistry offers a means to assess the magmatic evolution of a dying spreading ridge and provides an independent evaluation of the reliability of oceanic zircon as an indicator of mantle melting conditions. The Macquarie Island ophiolite in the Southern Ocean provides a unique testing ground for this approach due to its formation within a mid-ocean ridge that gradually changed into a transform plate boundary. Detrital zircon recovered from the island records this change through a progressive enrichment in incompatible trace elements. Oligocene age (33-27 Ma) paleo-detrital zircon in ophiolitic sandstones and breccias interbedded with pillow basalt have trace element compositions akin to a MORB crustal source, whereas Late Miocene age (8.5 Ma) modern-detrital zircon collected from gabbroic colluvium on the island have highly enriched compositions unlike typical oceanic zircon. This compositional disparity between age populations is not complimented by analytically equivalent eHf data that primarily ranges from 14 to 13 for sandstone and modern-detrital populations. A wider compositional range for the sandstone population reflects a multiple pluton source provenance and is augmented by a single cobble clast with eHf equivalent to the maximum observed composition in the sandstone (~17). Similar sandstone and colluvium Hf-isotope signatures indicate inheritance from a similar mantle reservoir that was enriched from the depleted MORB mantle average. The continuity in Hf-isotope signature relative to trace element enrichment in Macquarie Island zircon populations, suggests the latter formed by reduced partial melting linked to spreading-segment shortening and transform lengthening along the dying spreading ridge.
Resumo:
The South China Sea (SCS) is well connected with the western Pacific and influenced by the East Asian monsoon. We have examined temporal variations in radiocarbon marine reservoir ages (R) and regional marine reservoir corrections (DeltaR) of the SCS during the Holocene using paired measurements of AMS 14C and TIMS 230Th on 20 pristine corals. The results show large fluctuations in both R and DeltaR values over the past 7500 years (yrs) with two distinct plateaus during 7.5-5.6 and 3.5-2.5 thousand calendar years before present (cal ka BP). The respective weighted mean DeltaR values of these plateaus are 151 ± 85 and 89 ± 59 yrs, which are significantly higher than its modern value of -23 ± 52 yrs. This suggests that using a constant modern DeltaR value to calibrate 14C dates of the SCS marine samples will introduce additional errors to the calibrated ages. Our results provide the first database for the Holocene R and DeltaR values of the SCS for improved radiocarbon calibration of marine samples. We interpret the two DeltaR plateaus as being related to two intervals with weakened El Niño - Southern Oscillation (ENSO) and intensified East Asian summer monsoon (EASM). This is because the 14C content of the SCS surface water is controlled by both the 14C concentration of the Pacific North Equatorial Current (NEC) which is in turn influenced by ENSO-induced upwelling along the Pacific equator and vertical upwelling within the SCS as a result of moisture transportation to midlatitude region to supply the EASM rainfall.
Resumo:
The composition of gabbroic rocks from the drill core of Hole 735B (ODP Leg 176) at the 11 Ma Atlantis II bank close to the slow spreading Southwest Indian Ridge (SWIR) has been analyzed for major and trace elements and Sr, Nd and Pb isotopic composition. The samples are thought to represent much of the mineralogical and geochemical variation in a vertical 1-km section (500-1500 m below the sea floor) of the lower ocean crust. Primitive troctolitic gabbros, olivine gabbros and gabbros that have Mg#=84-70, Ca#>61 and low Na# (Na/(Na+Al)) (8-17) are intruded by patches or veins of more evolved FeTi-oxide rich gabbroic and dioritic rocks with Mg# to 20, Ca# to 32, Na#=14-23, TiO2<7 wt.% and FeOtotal<18 wt.%. All rocks are acdcumulates, and incompatible element concentrations are low, e.g. Pb=0.1-0.7 ppm and U=0.005 ppm in the primitive rocks and up to 2 ppm Pb and 0.2 ppm U in the evolved. The range of isotopic compositions of the unleached rocks is: 87Sr/86Sr=0.70280-0.70299, average 0.70287+/-0.00005 (1 S.D., N=30 samples) (except one felsic vein with 87Sr/86Sr=0.7045), 143Nd/144Nd=0.51304-0.51314, average 0.51310+/-0.00002 (1 S.D., N=28), 206Pb/204Pb=17.43-18.55, 207Pb/204Pb=15.40-15.61 and 208Pb/204Pb=37.19-38.28. The range of Sr and the almost constant Nd isotopic composition resemble that found in the upper 500 m of Hole 735B, while Pb ranges to more radiogenic compositions. In general, there is a decrease in isotopic variation of Sr and Pb as well as ? (238U/204Pb), U and Pb with depth, with a trend towards relatively unradiogenic compositions. This correlates with a decrease in alteration and frequency of evolved rock-types in the core. Leached samples generally have less radiogenic Pb with values trending towards 206Pb/204Pb=17.35, 207Pb/204Pb=15.35 and 208Pb/204Pb=37.0, while their 87Sr/86Sr ratios deviate less systematically from unleached rocks and reach both higher, 0.70307, and lower values, 0.70276. Separated clinopyroxene has elevated 87Sr/86Sr up to 0.7035, while plagioclase generally has close to whole rock Sr. Leaching reduced 87Sr/86Sr in clinopyroxene and in two (out of nine) cases leached separates and whole rock display isotopic equilibrium. Relatively minor hydrothermal seawater alteration is thought to have increased 87Sr/86Sr in the rocks, while a secondary high temperature percolation of a mantle-derived agent is thought to be the cause for the trend towards radiogenic Pb. This material had intermediate 87Sr/86Sr and may have originated from non-MORB off axis mantle. The main primary igneous isotopic variation of the gabbros is suggested to have been derived from the MORB-mantle and is defined mainly by leached samples from both ODP Leg 176 and Leg 118 and can be explained by two-component mixing of an end-member with composition like Central Indian Ridge basalts and an end-member with composition unlike any MORB. The latter is characterized by very unradiogenic Pb, in particular 207Pb/204Pb, and may have an origin with affinity to old depleted mantle (DM). The isotopic composition of the magmas parental to the FeTi-oxide rich rocks cannot be distinguished from the magmas parental to the primitive gabbros and an intimate relationship is indicated. The small-scale inhomogeneity indicated for the SWIR MORB-mantle at the Atlantis II Fracture Zone was probably inherited by the lower crustal rocks due to small-scale melting and monogenetic magma chambers at this slow spreading ridge.
Resumo:
Metal-rich sediments were found in the West Philippine Basin at DSDP sites 291 (located about 500 km SW of the Philippine Ridge or Central Basin Fault) and 294/295 (located about 580 km NE of the Philippine Ridge). In both cases the metalliferous deposits constitute a layer, probably Eocene in age, resting directly above the basaltic basement at the bottom of the sediment column. The chemistry of the major (including Fe and Mn) and trace elements (including trace metals, rare earth elements, U and Th) suggest a strong similarity of these deposits to metalliferous deposits produced by hydrothermal activity at oceanic spreading centers. Well-crystallized hematite is a major component of the metal-rich deposits at site 294/295. We infer that the Philippine Sea deposits were formed at some spreading center by hydrothermal processes of metallogenesis, similar to processes occurring at oceanic spreading centers. A locus for their formation might have been the Philippine Ridge (Central Basin Fault), probably an extinct spreading center. We conclude that metallogenesis of the type occurring at oceanic spreading centers can take place also in marginal basins. This has implications for the origin of metal deposits found in some ophiolite complexes, such as those in Luzon (Philippines), which may represent fragments of former marginal basins rather than of oceanic lithosphere.