856 resultados para northeastern South China sea
Resumo:
Triassic turbidites of the Nanpanjiang basin of south China represent the most expansive and voluminous siliciclastic turbidite accumulation in south China. The Nanpanjiang basin occurs at a critical junction between the southern margin of the south China plate and the Indochina, Siamo and Sibumasu plates to the south and southwest. The Triassic Yangtze carbonate shelf and isolated carbonated platforms in the basin have been extensively studied, but silicilastic turbidites in the basin have received relatively little attention. Deciphering the facies, paleocurrent indicators and provenance of the Triassic turbidites is important for several reasons: it promises to help resolve the timing of plate collisions along suture zones bordering the basin to the south and southwest, it will enable evaluation of which suture zones and Precambrian massifs were source areas, and it will allow an evaluation of the impact of the siliciclastic flux on carbonate platform evolution within the basin. Turbidites in the basin include the Early Triassic Shipao Formation and the Middle-Late Triassic Baifeng, Xinyuan, Lanmu Bianyang and Laishike formations. Each ranges upward of 700 m and the thickest is nearly 3 km. The turbidites contain very-fine sand in the northern part of the basin whereas the central and southern parts of the basin also commonly contain fine and rarely medium sand size. Coarser sand sizes occur where paleocurrents are from the south, and in this area some turbidites exhibit complete bouma sequences with graded A divisions. Successions contain numerous alternations between mud-rich and sand-rich intervals with thickness trends corresponding to proximal/ distal fan components. Spectacularly preserved sedimentary structures enable robust evaluation of turbidite systems and paleocurrent analyses. Analysis of paleocurrent measurements indicates two major directions of sediment fill. The northern part of the basin was sourced primarily by the Jiangnan massif in the northeast, and the central and southern parts of the basin were sourced primarily from suture zones and the Yunkai massif to the south and southeast respectively. Sandstones of the Lower Triassic Shipao Fm. have volcaniclastic composition including embayed quartz and glass shards. Middle Triassic sandstones are moderately mature, matrix-rich, lithic wackes. The average QFL ratio from all point count samples is 54.1/18.1/27.8% and the QmFLt ratio is 37.8/ 18.1/ 44.1%. Lithic fragments are dominantly claystone and siltstone clasts and metasedimentary clasts such as quartz mica tectonite. Volcanic lithics are rare. Most samples fall in the recycled orogen field of QmFLt plots, indicating a relatively quartz and lithic rich composition consistent with derivation from Precambrian massifs such as the Jiangnan, and Yunkai. A few samples from the southwest part of the basin fall into the dissected arc field, indicating a somewhat more lithic and feldspar-rich composition consistent with derivation from a suture zone Analysis of detrial zircon populations from 17 samples collected across the basin indicate: (1) Several samples contain zircons with concordant ages greater than 3000 Ma, (2) there are widespread peaks across the basin at 1800 Ma and 2500, (3) a widespread 900 Ma population, (3) a widespread population of zircons at 440 Ma, and (5) a larger population of younger zircons about 250 Ma in the southwestern part which is replaced to the north and northwest by a somewhat older population around 260-290 Ma. The 900 Ma provenance fits derivation from the Jiangnan Massif, the 2500, 1800, and 440 Ma provenance fits the Yunkai massif, and the 250 Ma is consistent with convergence and arc development in suture zones bordering the basin on the south or southwest. Early siliciclastic turbidite flux, proximal to source areas impacted carbonate platform evolution by infilling the basin, reducing accommodation space, stabilizing carbonate platform margins and promoting margin progradation. Late arrival, in areas far from source areas caused margin aggradation over a starved basin, development of high relief aggradational escarpments and unstable scalloped margins.
Resumo:
A reconnaissance study of alkenone stratigraphy for the past 35 m.y. in the northern South China Sea (SCS) using sediments from Sites 1147 and 1148 of Ocean Drilling Program (ODP) Leg 184 has been completed. Alkenones were not detected in sediment samples older than ~31 Ma. However, C37:2 appeared in the sedimentary record between ~8 and 31 Ma and both C37:2 and C37:3 were present between 0 and 8 Ma. These changes in alkenone occurrences may signal a response to global-scale Neogene cooling as well as to monsoon intensification and sea level changes over time as a result of Himalayan uplift and the opening of the SCS. Alternatively, they may be related to an evolutionary record of the development of temperature control on alkenone production in coccolithophores. The Uk'37 index for 0-8 Ma produces sea-surface temperatures (SST) of 19°-26°C, which are in the range of previously determined glacial-interglacial values for the northern SCS. Before the late Pleistocene (~1.2 Ma), the SST range is between 23° and 26°C with less variation. This change in variability may signify the early stage of intensified winter monsoons where cold wind and waters from the north may not yet have had a significant effect on SST or it may be the evolutionary link between the early development of unsaturated alkenones in coccolithophores and modern temperature control of alkenone production. We believe a long-term alkenone record is useful for further understanding of global-scale neogene cooling, the development of the East Asian monsoon system, and the evolutionary development of temperature control on alkenone unsaturation. Our data indicate that a high-resolution Uk'37 record for at least the last ~8 Ma is feasible for the northern SCS.
Resumo:
Dinoflagellate cysts are useful for reconstructing upper water conditions. For adequate reconstructions detailed information is required about the relationship between modern day environmental conditions and the geographic distribution of cysts in sediments. This Atlas summarises the modern global distribution of 71 organicwalled dinoflagellate cyst species. The synthesis is based on the integration of literature sources together with data of 2405 globally distributed surface sediment samples that have been preparedwith a comparable methodology and taxonomy. The distribution patterns of individual cyst species are being comparedwith environmental factors that are knownto influence dinoflagellate growth, gamete production, encystment, excystment and preservation of their organic-walled cysts: surface water temperature, salinity, nitrate, phosphate, chlorophyll-a concentrations and bottom water oxygen concentrations. Graphs are provided for every species depicting the relationship between seasonal and annual variations of these parameters and the relative abundance of the species. Results have been compared with previously published records; an overview of the ecological significance as well as information about the seasonal production of each individual species is presented. The relationship between the cyst distribution and variation in the aforementioned environmental parameters was analysed by performing a canonical correspondence analysis. All tested variables showed a positive relationship on the 99% confidence level. Sea-surface temperature represents the parameter corresponding to the largest amount of variance within the dataset (40%) followed by nitrate, salinity, phosphate and bottom-water oxygen concentration, which correspond to 34%, 33%, 25% and 24% of the variance, respectively. Characterisations of selected environments as well as a discussion about how these factors could have influenced the final cyst yield in sediments are included.
Resumo:
The Late Weichselian-Early Holocene variability of the North Atlantic Current has been studied with focus on the zonal component of this meridional transport during the transition from glacial to interglacial conditions. The investigated sediment core is from 409 m water depth in the SW Barents Sea. Eight Accelerator mass spectrometry (AMS) 14C dates show that the core covers the last 20,000 cal yr B.P. with a centennial scale resolution during Late Weichselian-Early Holocene. Planktic foraminiferal assemblages were analyzed using the >100 ?m size fraction and foraminiferal planktic and benthic d13C and d18O isotopes were measured. Furthermore, a range of physical and chemical analyses has been carried out on the bulk sediment samples. Four time periods have been identified which represent the varying oceanographic conditions in Ingøydjupet, a glacial trough located off the north coast of Norway in the SW Barents Sea. 1) The late glacial (before ca 15,000 cal yr B.P.) influenced by the nearby ice sheets with high amounts of sea ice- or iceberg-transported detritus. 2) The late Oldest Dryas stadial and the Bølling-Allerød interstadial (ca 15,000-12,700 cal yr B.P.) with cold surface water conditions influenced by the collapse of the nearby ice sheets, high amounts of sea ice- or iceberg-transported detritus and melt water and weak subsurface inflow of Atlantic Water. 3) The Younger Dryas cold stadial (12,700-11,650 cal yr B.P.) with low primary productivity and extensive sea ice cover and 4) The Preboreal and Early Holocene (11,650-6800 cal yr B.P. cal yr B.P.) with strong influx of Atlantic Water into the area, near absence of ice rafted debris and generally ameliorated conditions in both surface and bottom water masses as seen from a high flux of foraminifera and increased marine primary production.
Resumo:
The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedented global data set for ecological and biochemical analysis and modeling as well as a clear mandate for compiling additional existing data and for focusing future data gathering efforts on key groups in key areas of the ocean. The present data set presents depth integrated values of diazotrophs abundance and biomass, computed from a collection of source data sets.