178 resultados para koodit - URL
Oxygen variance and meridional oxygen supply in the Tropical North East Atlantic oxygen minimum zone
Resumo:
The distribution of the mean oceanic oxygen concentration results from a balance between ventilation and consumption. In the eastern tropical Pacific and Atlantic, this balance creates extended oxygen minimum zones (OMZ) at intermediate depth. Here, we analyze hydrographic and velocity data from shipboard and moored observations, which were taken along the 23°W meridian cutting through the Tropical North East Atlantic (TNEA) OMZ, to study the distribution and generation of oxygen variability. By applying the extended Osborn-Cox model, the respective role of mesoscale stirring and diapycnal mixing in producing enhanced oxygen variability, found at the southern and upper boundary of the OMZ, is quantified. From the well-ventilated equatorial region toward the OMZ core a northward eddy-driven oxygen flux is observed whose divergence corresponds to an oxygen supply of about 2.4 µmol kg-1 year-1 at the OMZ core depth. Above the OMZ core, mesoscale eddies act to redistribute low- and high-oxygen waters associated with westward and eastward currents, respectively. Here, absolute values of the local oxygen supply >10 mmol kg-1 year-1 are found, likely balanced by mean zonal advection. Combining our results with recent studies, a refined oxygen budget for the TNEA OMZ is derived. Eddy-driven meridional oxygen supply contributes more than 50 % of the supply required to balance the estimated oxygen consumption. The oxygen tendency in the OMZ, as given by the multidecadal oxygen decline, is maximum slightly above the OMZ core and represents a substantial imbalance of the oxygen budget reaching about 20 % of the magnitude of the eddy-driven oxygen supply.
Resumo:
Marine yeasts play an important role in biodegradation and nutrient cycling and are often associated with marine flora and fauna. They show maximum growth at pH levels lower than present-day seawater pH. Thus, contrary to many other marine organisms, they may actually profit from ocean acidification. Hence, we conducted a microcosm study, incubating natural seawater from the North Sea at present-day pH (8.10) and two near-future pH levels (7.81 and 7.67). Yeasts were isolated from the initial seawater sample and after 2 and 4 weeks of incubation. Isolates were classified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and representative isolates were identified by partial sequencing of the large subunit rRNA gene. From the initial seawater sample, we predominantly isolated a yeast-like filamentous fungus related to Aureobasidium pullulans, Cryptococcus sp., Candida sake, and various cold-adapted yeasts. After incubation, we found more different yeast species at near-future pH levels than at present-day pH. Yeasts reacting to low pH were related to Leucosporidium scottii, Rhodotorula mucilaginosa, Cryptococcus sp., and Debaryomyces hansenii. Our results suggest that these yeasts will benefit from seawater pH reductions and give a first indication that the importance of yeasts will increase in a more acidic ocean.
Resumo:
A study of the distribution, dispersal and composition of surficial sediments in the Strait of Georgia, B.C., has resulted in the understanding of basic sedimentologic conditions within this area. The Strait of Georgia is: a long, narrow, semi-enclosed basin with a restricted circulation and a single, main, sediment source. The Fraser. River supplies practically all the sediment now being deposited in the Strait of Georgia, the bulk of it during the spring and summer freshet. This river is building a delta into the Strait from the east side near the south end. Ridges of Pleistocene deposits within the Strait and Pleistocene material around the margins, like bedrock exposures, provide local sources of sediment of only minor importance. Rivers and streams other than the Fraser contribute insignificant quantities of sediment to the Strait. Sandy sediments are concentrated in the vicinity of the delta, and in the area to the south and southeast. Mean grain size decreases from the delta toward the northwest along the axis of the Strait, and basinwards from the margins. Silts and clays are deposited in deep water west and north of the delta front, and in deep basins northwest of the delta. Poorly sorted sediments containing a gravel component are located near tidal passes, on the Vancouver Island shelf area, on ridge tops within the Strait, and with sandy sediments at the southeastern end of the study area. The Pleistocene ridges are areas of non-deposition, having at most a thin veneer of modern mud on their crests and upper flanks. The southeastern end of the study area contains a thick wedge of shandy sediment which appears to be part of an earlier delta of the Fraser River. Evidence suggests that it is now a site of active submarine erosion. Sediments throughout the Strait are compositionally extremely similar, with-Pleistocene deposits of the Fraser River drainage basin providing the principal, heterogeneous source. Gravels and coarse sands are composed primarily of lithic fragments, dominantly of dioritic to granodloritlc composition. Sand fractions exhibit increasing simplicity of mineralogy with decreasing grain-size. Quartz, felspar, amphibole and fine-grained lithic fragments are the dominant constituents of the finer sand grades. Coarse and medium silt fractions have compositions similar to the fine sands. Fine silts show an increase in abundance of phyllosilicate material, a feature even more evident in the clay-size fractions on Montmorillonite, illite, chlorite, quartz and feldspar are the main minerals in the coarse clay fraction, with minor mixed-layer clays and kaolinite. The fine clay fraction is dominated by montmorillonite, with lesser amounts of illite and chlorite. The sediments have high base-exchange capacities, related to a considerable content of montmorillonite. Magnesium is present in exchange positions in greater quantity in Georgia Strait sediments than in sediments from the Fraser River, indicating a preferential uptake of this element in the marine environment. Manganese nodules collected from two localities in the Strait imply slow sediment accumulation rates at these sites. Sedimentation rates on and close to the delta, and in the deep basins to the northwest, are high.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. Data sets in this collection provide methodological and environmental context to all samples collected during the Tara Oceans Expedition (2009-2013).
Resumo:
This paper describes seagrass species and percentage cover point-based field data sets derived from georeferenced photo transects. Annually or biannually over a ten year period (2004-2015) data sets were collected using 30-50 transects, 500-800 m in length distributed across a 142 km**2 shallow, clear water seagrass habitat, the Eastern Banks, Moreton Bay, Australia. Each of the eight data sets include seagrass property information derived from approximately 3000 georeferenced, downward looking photographs captured at 2-4 m intervals along the transects. Photographs were manually interpreted to estimate seagrass species composition and percentage cover (Coral Point Count excel; CPCe). Understanding seagrass biology, ecology and dynamics for scientific and management purposes requires point-based data on species composition and cover. This data set, and the methods used to derive it are a globally unique example for seagrass ecological applications. It provides the basis for multiple further studies at this site, regional to global comparative studies, and, for the design of similar monitoring programs elsewhere.
Resumo:
As the atmospheric CO2 concentration rises, more CO2 will dissolve in the oceans, leading to a reduction in pH. Effects of ocean acidification on bacterial communities have mainly been studied in biologically complex systems, in which indirect effects, mediated through food web interactions, come into play. These approaches come close to nature but suffer from low replication and neglect seasonality. To comprehensively investigate direct pH effects, we conducted highly-replicated laboratory acidification experiments with the natural bacterial community from Helgoland Roads (North Sea). Seasonal variability was accounted for by repeating the experiment four times (spring, summer, autumn, winter). Three dilution approaches were used to select for different ecological strategies, i.e. fast-growing or low-nutrient adapted bacteria. The pH levels investigated were in situ seawater pH (8.15-8.22), pH 7.82 and pH 7.67, representing the present-day situation and two acidification scenarios projected for the North Sea for the year 2100. In all seasons, both automated ribosomal intergenic spacer analysis and 16S ribosomal amplicon pyrosequencing revealed pH-dependent community shifts for two of the dilution approaches. Bacteria susceptible to changes in pH were different members of Gammaproteobacteria, Flavobacteriaceae, Rhodobacteraceae, Campylobacteraceae and further less abundant groups. Their specific response to reduced pH was often context-dependent. Bacterial abundance was not influenced by pH. Our findings suggest that already moderate changes in pH have the potential to cause compositional shifts, depending on the community assembly and environmental factors. By identifying pH-susceptible groups, this study provides insights for more directed, in-depth community analyses in large-scale and long-term experiments.
Resumo:
The Climatological Database for the World's Oceans: 1750-1854 (CLIWOC) project, which concluded in 2004, abstracted more than 280,000 daily weather observations from ships' logbooks from British, Dutch, French, and Spanish naval vessels engaged in imperial business in the eighteenth and nineteenth centuries. These data, now compiled into a database, provide valuable information for the reconstruction of oceanic wind field patterns for this key period that precedes the time in which anthropogenic influences on climate became evident. These reconstructions, in turn, provide evidence for such phenomena as the El Niño-Southern Oscillation and the North Atlantic Oscillation. Of equal importance is the finding that the CLIWOC database the first coordinated attempt to harness the scientific potential of this resource represents less than 10 percent of the volume of data currently known to reside in this important but hitherto neglected source.
Resumo:
The estimation of the carbon dioxide (CO2) fluxes above the open ocean plays an important role for the determination of the global carbon cycle. A frequently used method therefore is the eddy-covariance technique, which is based on the theory of the Prandl-layer with height-constant fluxes in the atmospheric boundary layer. To test the assumption of the constant flux layer, in 2008 measurements of turbulent heat and CO2 fluxes were started within the project Surface Ocean Processes in the Anthropocene (SOPRAN) at the research platform FINO2. The FINO2 platform is situated in the South-west of the Baltic Sea, in the tri-border region between Germany, Denmark, and Sweden. In the frame of the Research project SOPRAN, the platform was equipped with additional sensors in June 2008. A combination of 3-component sonic anemometers (USA-1) and open-path infrared gas analyzers for absolute humidity (H2O) and CO2 (LICOR 7500) were installed at a 9m long boom directed southward of the platform in two heights, at 6.8 and 13.8m above sea surface. Additionally slow temperature and humidity sensors were installed at each height. The gas analyzer systems were calibrated before the installation and worked permanently without any calibration during the first measurement period of one and a half years. The comparison with the measurements of the slow sensors showed for both instruments no significant long-term drift in H2O and CO2. Drifts on smaller time scales (in the order of days) due to the contamination with sea salt, were cleaned naturally by rain. The drift of both quantities had no influence on the fluctuation, which, in contrast to the mean values, are important for the flux estimation. All data were filtered due to spikes, rain, and the influence of the mast. The data set includes the measurements of all sensors as average over 30 minutes each for one and a half years, June 2008 to December 2009, and 10 month from November 2011 to August 2012. Additionally derived quantities for 30 minutes intervals each, like the variances for the fast-sensor variables, as well as the momentum, sensible and latent heat, and CO2 flux are presented.
Resumo:
Scientific background: Marine mammals use sound for communication, navigation and prey detection. Acoustic sensors therefore allow the detection of marine mammals, even during polar winter months, when restricted visibility prohibits visual sightings. The animals are surrounded by a permanent natural soundscape, which, in polar waters, is mainly dominated by the movement of ice. In addition to the detection of marine mammals, acoustic long-term recordings provide information on intensity and temporal variability of characteristic natural and anthropogenic background sounds, as well as their influence on the vocalization of marine mammals Scientific objectives: The PerenniAL Acoustic Observatory in the Antarctic Ocean (PALAOA, Hawaiian "whale") near Neumayer Station is intended to record the underwater soundscape in the vicinity of the shelf ice edge over the duration of several years. These long-term recordings will allow studying the acoustic repertoire of whales and seals continuously in an environment almost undisturbed by humans. The data will be analyzed to (1) register species specific vocalizations, (2) infer the approximate number of animals inside the measuring range, (3) calculate their movements relative to the observatory, and (4) examine possible effects of the sporadic shipping traffic on the acoustic and locomotive behaviour of marine mammals. The data, which are largely free of anthropogenic noise, provide also a base to set up passive acoustic mitigation systems used on research vessels. Noise-free bioacoustic data thereby represent the foundation for the development of automatic pattern recognition procedures in the presence of interfering sounds, e.g. propeller noise.