228 resultados para difference distri bution table


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strontium concentrations and 87Sr/86Sr values were measured on pore-water and sedimentary carbonate samples from sediments recovered at Sites 1049-1053 on the Blake Spur during Ocean Drilling Program Leg 171B. These sites form a 40-km-long depth transect extending along the crest of the Blake Spur from near the upper edge of the Blake Escarpment (a steep cliff composed of Mesozoic carbonates) westward toward the interior of the Blake-Bahama Platform. Although these sites were selected for paleoceanographic purposes, they also form a hydrologic transect across the upper eastern flank of the Blake-Bahama Platform. Here, we use pore-water strontium concentrations and isotopes as a proxy to define patterns of fluid movement through the flanks of this platform. Pore-water strontium concentration increases with depth at all sites implying that strontium has been added during sediment burial and diagenesis. The isotopic values decrease from seawater-like values in the shallow samples (~0.70913) to values as low as 0.707342 in one of the deepest samples (~625 meters below seafloor). The change in pore-water strontium isotopic values is independent of the strontium isotopic compositions predicted from the host sediment age and measured on bulk carbonate in some samples. In most cases the difference between predicted sediment strontium isotopic composition and measured value is less than ±2 about the mean of the measured strontium value. Both the increase in concentration and the decrease in the strontium isotope values with increasing depth indicate that strontium was expelled from older carbonates. The strontium concentration and isotope profiles vary between sites according to their proximity to the Blake-Bahama Platform edge. Profiles from Site 1049 (nearest the platform edge) show the greatest amount of mixing with modern seawater, whereas the site most distal to the platform edge (Site 1052) shows the most significant influence of older, deeper carbonates on the pore-water strontium isotopic composition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New osmium (Os) isotope and platinum group element (PGE) concentration data are used in conjunction with published 3He and Th isotope data to determine the relative proportions of lithogenic, extraterrestrial and hydrogenous iridium (Ir) in a Pacific pelagic carbonate sequence from the Ocean Drilling Program (ODP) Site 806 on the Ontong Java Plateau (OJP). These calculations demonstrate that lithogenic and extraterrestrial contributions to sedimentary Ir budget are minor, while hydrogenous Ir accounts for roughly 85% of the total Ir. Application of analogous partitioning calculations to previously reported data from a North Pacific red clay sequence (LL44-GPC3) yields very similar results. Total Ir burial fluxes at Site 806 and LL44-GPC3 are also similar, 45 and 30 pg/cm**2/kyr, respectively. Average Ir/3He and Ir/xs230Th_initial ratios calculated from the entire Site 806 data set are similar to those reported earlier for Pacific sites. In general, down-core profiles of Ir, 3He and xs230Th_initial, are not well correlated with one another. However, all three data sets show similar variance and yield sediment mass accumulation rate estimates that agree within a factor of two. While these results indicate that Ir concentration has potential as a point-paleoflux tracer in pelagic carbonates, Ir-based paleoflux estimates are likely subject to uncertainties that are similar to those associated with Co-based paleoflux estimates. Consequently, local calibration of Ir flux in space and time will be required to fully assess the potential of Ir as a point paleoflux tracer. Measured 187Os/188Os of the OJP sediments are systematically lower than the inferred 187Os/188Os of contemporaneous seawater and a clear glacial-interglacial 187Os/188Os variation is lacking. Mixing calculations suggest Os contributions from lithogenic sources are insufficient to explain the observed 187Os/188Os variations. The difference between the 187Os/188Os of bulk sediment and that of seawater is interpreted in terms of subtle contributions of unradiogenic Os carried by particulate extraterrestrial material. Down-core variations of 187Os/188Os with Pt/Ir and Os/Ir also point to contributions from extraterrestrial particles. Mixing calculations for each set of several triplicate analyses suggest that the unradiogenic Os end member cannot be characterized by primary extraterrestrial particles of chondritic composition. It is noteworthy that in efforts aimed at determining the effect of extraterrestrial contributions, 187Os/188Os of pelagic carbonates has greater potential compared to abundances of PGE. An attempt has been made for the first time to estimate sediment mass accumulation rates based on amount of extraterrestrial Os in the OJP samples and previously reported extraterrestrial Os flux. Throughout most of the OJP record, Os isotope-based paleoflux estimates are within a factor of two of those derived using other constant flux tracers. Meaningful flux estimates cannot be made during glacial maxima because the OJP sediments do not record the low 187Os/188Os reported previously. We speculate that this discrepancy may be related to focusing of extraterrestrial particles at the OJP, as has been suggested to explain down-core 3He variations.