628 resultados para deep-water corals
Resumo:
Vertical profiles of dissolved and particulate 230Th and 231Pa were obtained across the Antarctic Circumpolar Current (ACC) in the southern Atlantic. North of the Polar Front, dissolved and total 230Th increase with depth in conformity with published scavenging models. There is no depletion of 230Th or 231Pa in the water column south of the Polar Front, thought to be an area of enhanced biological productivity. 230Th concentrations increase three-fold to the Weddell Sea across the ACC. Dissolved and total 231Pa concentrations are relatively constant below 500 m depth at about 0.3 dpm m**-3, and change little with depth or latitude. The results from the Weddell Gyre are explained by a mixing-scavenging model that takes into account the input of lower Circumpolar Deep Water through upwelling, which is the main source of water in the Weddell Gyre and is enriched in 230Th but not in 231Pa. 230Th accumulates in the Weddell Gyre as a result of a reduction in the scavenging rate and by ingrowth from 234U. Ingrowth is more significant for 230Th than for 231Pa because the residence time of water in the gyre (about 35 years) is similar to the scavenging residence time of Th in the south Atlantic (29 years) but shorter than that of Pa (120 years). It is argued that changes in 230Th accumulation in the past may reflect changes in water residence time and in the formation rate of Weddell Sea Deep Water.
Resumo:
Determinations were made of contents of carbon, lipids, nitrogen and, in some material, protein, carbohydrates, elementary composition of lipids and their spectral composition in total plankton samples from different depths (from the surface to 3000 m) and in several species of macroplanktonic deep-water crustaceans (decapods and mysids) living at different depths. Content of organic carbon and lipids in total plankton is high (40 to 60 and 35 to 70% of dry weight, respectively) and it does not change significantly with increasing depth. Deep-water macroplanktonic crustaceans have extremely high content of organic carbon and lipids, but there are no significant differences in this respect between species that live in different layers of the deep-water zone. Elementary composition of lipids indicates that they are highly saturated, with a marked predominance of unsaponifiable fraction, about 20% of which consists of methane hydrocarbons.
Resumo:
Actinium is one of the rarest naturally occurring elements on earth. We measured its longest-lived isotope 227Ac (half-life 21.77 yr) for the first time in the water column of the Southeast Pacific, the Central Arctic, the Antarctic Circumpolar Current (ACC) and the Weddell Gyre (WG). Besides the profile in the Southeast Pacific, which confirms earlier findings about the role of diapycnal mixing for 227Ac distribution, we found three other different types of vertical profiles. These profiles point to a prominent role of advection for 227Ac distribution, especially in the Southern Ocean. Depending on the type of profile found, 227Ac is proposed as a tracer for different oceanographic questions. In the Southern Ocean, up to 4.93±0.32 dpm/m**3 227Ac is found close to the sea floor, which is the highest concentration ever observed in the ocean. Close to the sea surface in the WG, 0.46±0.05 dpm/m**3 227Acex (227Ac in excess of its progenitor 231Pa) is detected. We use 227Acex there to determine the upwelling velocity in the Eastern WG to be about 55 m/yr. In the ACC, Upper and Lower Circumpolar Deep Water (UCDW and LCDW) are found to differ clearly in their 227Acex activity. High 227Acex activities are therefore a promising tracer for recent inputs of LCDW to the sea surface, which may help to understand the role of deep upwelling for iron inputs into Antarctic surface waters. The expected release of 227Ac is compared with 228Ra to make sure that the large near-surface excess in the water column of the Southern Ocean is not due to lateral inputs by isopycnal mixing. Data from the Central Arctic and from a transect across the ACC confirm that 228Ra and 227Acex differ strongly in their sources. The first measurements of 227Ac on suspended matter (less than 1.7% of total 227Ac close to the sea floor) indicate that the particle reactivity of 227Ac is negligible in the open ocean, in agreement with earlier findings [Y. Nozaki, Nature 310 (1984) 486-488]. Despite the extremely low concentrations of 227Ac, new measurement techniques [W.S. Moore, R. Arnold, J. Geophys. Res. 101 (1996) 1321-1329] point to a comfortable and comparably simple determination of 227Ac in the future. Finally, 227Acex may become a widely used deep-sea specific tracer.
Resumo:
The circulation and internal structure of the oceans exert a strong influence on Earth's climate because they control latitudinal heat transport and the segregation of carbon between the atmosphere and the abyss (Sigman et al., 2010, doi:10.1038/nature09149). Circulation change, particularly in the Atlantic Ocean, is widely suggested (Bartoli et al., 2005, doi:10.1016/j.epsl.2005.06.020; Haug and Tiedemann, 1998, doi:10.1038/31447; Woodard et al., 2014, doi:10.1126/science.1255586; McKay et al., 2012, doi:10.1073/pnas.1112248109) to have been instrumental in the intensification of Northern Hemisphere glaciation when large ice sheets first developed on North America and Eurasia during the late Pliocene, approximately 2.7 million years ago (Bailey et al., 2013, doi:10.1016/j.quascirev.2013.06.004). Yet the mechanistic link and cause/effect relationship between ocean circulation and glaciation are debated. Here we present new records of North Atlantic Ocean structure using the carbon and neodymium isotopic composition of marine sediments recording deep water for both the Last Glacial to Holocene (35-5 thousand years ago) and the late Pliocene to earliest Pleistocene (3.3-2.4 million years ago). Our data show no secular change. Instead we document major southern-sourced water incursions into the deep North Atlantic during prominent glacials from 2.7 million years ago. Our results suggest that Atlantic circulation acts as a positive feedback rather than as an underlying cause of late Pliocene Northern Hemisphere glaciation. We propose that, once surface Southern Ocean stratification (Sigman, et al., 2004, doi:10.1038/nature02357) and/or extensive sea-ice cover (McKay et al., 2012, doi:10.1073/pnas.1112248109) was established, cold-stage expansions of southern-sourced water such as those documented here enhanced carbon dioxide storage in the deep ocean, helping to increase the amplitude of glacial cycles.
Resumo:
Observations on the ecology and distribution of meiofauna occurring on the outer continental shelf and continental slope at depths from 50 to 2500 m in the region where the Blake Plateau cuts across the North Carolina slope are reported. Total numbers of meiofauna ranged from 151/100 cm**3 of sediment at 400 m to 1196/100 cm**3 of sediment at 250 m. Sediments of the upper region (50-500 m) consisted of medium-sized calcareous sands with relatively low organic carbon contents, while the deeper sediments (600-2500 m) consisted of sandy silts and silts with organic carbon contents 6-10 times that of the shallower sediments. Two basic faunas appear to be present in the areas investigated; a shallow-water fauna extending from 50 to 500 m and a deep-water fauna from 800 to 2500 m. The shallow-water fauna consists of nematodes (the dominant taxon) and relatively large numbers of harpactacoid copepods, ostracods, benthic foraminifera, polychaetes, gastrotrichs and several other groups, while below 500 m only nematodes and foraminifera are present in large numbers, the latter being especially abundant between 800 and 2000 m. A major change in the meiofauna occurs on the Blake Plateau between the depths of approximately 400-500 m and 600-750 m where the composition of the sediment changes from sand to silty sand. From 50 m to 400-500 m gastrotrichs, turbellaria, tardigrades, kinorhynchs, halicarids, hydrozoans, gnathostomulids, lamellibranchs and cumaceans are commonly encountered; these groups are absent below 500 m. In addition, there are significant reductions in the numbers of harpactacoids, ostracods, nemerteans and polychaetes below 500 m. Examination of the nematode population also show faunal differences between the shallower sediments (50-500 m) and the deeper sediments (600-2500 m). High indices of affinity exist among the faunas between 50 and 500 m and among the faunas between 800 and 2500 m; the fauna at 600-750 m represents a transition between these two regions, but it is more closely related to the deep-water fauna. Changes in the distribution of both the total meiofuna and also the nematodes are highly correlated with changes in sediments composition and bottom water temperatures. It is suggested that changes in grain size and accompanying changes in sources of nutrition, which are the results of Gulf Stream and other current activity, are the dominant environmental factors influencing the meiofauna of the area.
Resumo:
Stable isotope analyses and scanning electron micrographs have been carried out on six planktonic forminifera species, Pulleniatina obliquiloculata, Globorotalia tumida, Sphaeroidinella dehiscens, Globigerinoides ruber, Globigerinoides sacculifer and Globigerinoides quadrilobatus from eleven box-cores taken at increasing depths in the equatorial Ontong-Java Plateau (Pacific). This allows us to describe the way dissolution affects the microstructures of the tests of the different species and to quantify the changes of isotopic composition. We may conclude that: 1) dissolution effects on test morphology and stable isotope compositions are species dependent, species with a similar habitat showing a similar trend; 2) the shallow water, thin-shelled species are the first to disappear: scanning electron microscope (SEM) work shows alteration of outer layers. Deep water, thick-shelled species are present in all samples: SEM work shows breakdown and disparition of inner layers; 3) for all species there is a similar trend towards increasing delta18O values with increasing water depths and increasing dissolution. This effect may be as high as 0.6 ? per thousand meters for Globorotalia tumida; 4) below the lysocline, around 3500 m, it appears that 13C/12C ratios slightly increase towards equilibrium values for thick shelled species: G. tumida, P. obliquiloculata and S. dehiscens. 14C dates and isotope stratigraphy of two box-cores show that all samples are recent in age, and exclude upward mixing of glacial deposits as an important factor.