172 resultados para caldera de condensación
Resumo:
Volcanic ash layers (1-3 cm thick) are abundant in the North Aoba Basin drill sites but less common at forearc sites. Ash deposited on the forearc slopes is liable to be redistributed as turbidites. In addition, the westerly upper winds also minimize ash-fall on the western (forearc) side of the New Hebrides Island Arc. Crystalline components in the ashes are primarily plagioclase (An90-An44), clinopyroxene (Ca46Mg49Fe5-Ca43Mg33Fe24), olivine (Fo87-Fo62), and titanomagnetite. There are also small amounts of orthopyroxene, magnetite, apatite, and quartz. Glass shards occur in most of the ashes and range in composition from basalt to rhyolite. There is often a variety of glass compositions within a single ash layer. One explanation for this is that the rate of accumulation of ash from several different eruptions or eruptive phases exceeded the background sedimentation rate: there may also have been a certain amount of reworking. The high-K and low-K trends previously recognized in volcanic rocks from the New Hebrides Island Arc are clearly represented in the Leg 134 glasses. All of the ashes investigated here are thought to have originated from the Central Chain volcanoes. The source of the high-K group was probably the Central Basin volcanoes of Santa Maria, Aoba, and Ambrym. The lower-K series includes a distinctive group of dacites and is likely to have originated from the Epi-Tongoa-Tongariki sector of the arc where major pyroclastic eruptions, associated with caldera collapse, have occurred during the Holocene, perhaps as recently as 400 yr ago.
Resumo:
Manganese nodules made of radiating rods of well crystallized birnessite were sampled at 8 degree 481.2'N, 103 degree 53.8W, 1875 m below sea level by a dredge that also collected hyaloclastite and basaltic talus. The nodule field is on the floor of a caldera within a young tholeiitic seamount and was discovered and photographed during a deep-two survey. It is interpreted as a brecciated hydrothermal deposit, crystallized from an amorphous manganese oxide precipitate that formed when seawater-based hydrothermal fluids mixed with oxidized seawater. The nodules and surrounding igneous rocks have subsequently been encrusted with hydrogenous ferromanganese oxides.
Resumo:
Here we present a tephrostratigraphic record (core Co1202) recovered from the northeastern part of Lake Ohrid (Republics of Macedonia and Albania) reaching back to Marine Isotope Stage (MIS) 6. Overall ten horizons (OT0702-1 to OT0702-10) containing volcanic tephra have been recognised throughout the 14.94 m long sediment succession. Four tephra layers were visible at macroscopic inspection (OT0702-4, OT0702-6, OT0702-8 and OT0702-9), while the remaining six are cryptotephras (OT0702-1, OT0702-2, OT0702-3, OT0702-5, OT0702-7 and OT0702-10) identified from peaks in K, Zr and Sr intensities, magnetic susceptibility measurements, and washing and sieving of the sediments. Glass shards of tephra layers and cryptotephras were analysed with respect to their major element composition, and correlated to explosive eruptions of Italian volcanoes. The stratigraphy and the major element composition of tephra layers and cryptotephras allowed the correlation of OT0702-1 to AD 472 or AD 512 eruptions of Somma-Vesuvius, OT0702-2 to the FL eruption of Mount Etna, OT0702-3 to the Mercato from Somma-Vesuvius, OT0702-4 to SMP1-e/Y-3 eruption from the Campi Flegrei caldera, OT0702-5 to the Codola eruption (Somma-Vesuvius or Campi Flegrei), OT0702-6 to the Campanian Ignimbrite/Y-5 from the Campi Flegrei caldera, OT0702-7 to the Green Tuff/Y-6 eruption from Pantelleria Island, OT0702-8 to the X-5 eruption probably originating from the Campi Flegrei caldera, OT0702-9 to the X-6 eruption of generic Campanian origin, and OT0702-10 to the P-11 eruption from Pantelleria Island. The fairly well-known ages of these tephra layers and parent eruptions provide new data on the dispersal and deposition of these tephras and, furthermore, allow the establishment of a chronological framework for core Co1202 for a first interpretation of major sedimentological changes.