808 resultados para bulk chemical composition
Resumo:
Since studies on deep-sea cores were carried out in the early 1990s it has been known that ambient temperature may have a marked affect on apatite fission track annealing. Due to sluggish annealing kinetics, this effect cannot be quantified by laboratory annealing experiments. The unknown amount of low-temperature annealing remains one of the main uncertainties for extracting thermal histories from fission track data, particularly for samples which experienced slow cooling in shallow crustal levels. To further elucidate these uncertainties, we studied volcanogenic sediments from five deep-sea drill cores, that were exposed to maximum temperatures between ~10° and 70°C over geological time scales of ~15-120 Ma. Mean track lengths (MTL) and etch pit diameters (Dpar) of all samples were measured, and the chemical composition of each grain analyzed for age and track length measurements was determined by electron microprobe analysis. Thermal histories of the sampled sites were independently reconstructed, based on vitrinite reflectance measurements and/or 1D numerical modelling. These reconstructions were used to test the most widely used annealing models for their ability to predict low-temperature annealing. Our results show that long-term exposure to temperatures below the temperature range of the nominal apatite fission track partial annealing zone results in track shortening ranging between 4 and 11%. Both chlorine content and Dpar values explain the downhole annealing patterns equally well. Low chlorine apatite from one drill core revealed a systematic relation between Si-content and Dpar value. The question whether Si-substitution in apatite has direct and systematic effects on annealing properties however, cannot be addressed by our data. For samples, which remained at temperatures <30°C, and which are low in chlorine, the Laslett et al. [Laslett G., Green P., Duddy I. and Gleadow A. (1987) Thermal annealing of fission tracks in apatite. Chem. Geol. 65, 1-13] annealing model predicts MTL up to 0.6 µm longer than those actually measured, whereas for apatites with intermediate to high chlorine content, which experienced temperatures >30°C, the predictions of the Laslett et al. (1987) model agree with the measured MTL data within error levels. With few exceptions, predictions by the Ketcham et al. [Ketcham R., Donelick R. and Carlson W. (1999) Variability of apatite fission-track annealing kinetics. III: Extrapolation to geological time scales. Am. Mineral. 84/9, 1235-1255] annealing model are consistent with the measured data for samples which remained at temperatures below ~30°C. For samples which experienced maximum temperatures between ~30 and 70°C, and which are rich in chlorine, the Ketcham et al. (1999) model overestimates track annealing.
Resumo:
The aim of this project was a petrogeochemical study of igneous rocks in the areas of the Mohns and Knipovich Ridges, both being the northern extensions of the Mid-Atlantic Ridge (MAR), using data available for quenching glass samples collected during Cruises 36 and 38 of R/V Akademic Mstislav Keldysh and during Cruise 15 of R/V Professor Logachev. Results of igneous rock studying from the Mohns and Knipovich Ridges at the background of evolution of the total North Atlantic Province, which had been identified earlier from tectonic and geophysical data, showed that igneous rocks of the Knipovich Ridge can be ranked as shallow tholeiites, primary melts of which were relatively rich in Na and Si and poor in Fe. This type of magma is characteristic of colder regions of the oceanic lithosphere. Its occurrence in the Knipovich Ridge and its potential propagation up to the Gakkel Ridge suggest that igneous rocks of this region originated under conditions of passive spreading in contrast to the MAR region in vicinity of Iceland and Azores, where substantial contribution of hotter material of a rising plume contributed to formation of the oceanic crust. The North Atlantic Ocean is the youngest province in terms of ocean-floor opening. Geologically and geophysically it is one of well studied regions of the World Ocean. Nevertheless some basic key items of its origin still remain to be clarified. In 1975 Scatler et al. proved specifics of this region manifested in growth of the gravity field, and also in relative height of the ocean floor in the region of 33-70°N, which was associated by them with rise of the hotter mantle, as compared with common regions of the Mid-Atlantic Ridge. Later this view was confirmed by character of magmatism, which differed in depth of generation and by melting degree of the resulting primary magma. Uniqueness of the North Atlantic region was also proved by the fact that this region was marked by extensive geochemical anomalies associated with Azores, Iceland, and Jan Mayen. All of these data allow to consider the northern part of the MAR (north of 33°N) as an united global geotectonic province. The Mohns and Knipovich Ridges located north of Iceland locate at the northern end of this province. This is the least known region. Therefore, new data for ridge areas of 73-77°N are needed for more complete geologic history of the Arctic Basin. The aim of this study was to carry out a complex comparison of magmatism at the Mohns and Knipovich Ridges with magmatism at large segments of the MAR northern province and to reconstruct mechanisms of primary magma formation, as well as conditions of their fractionation. This paper was based on results of studying quenched glasses, which reflect evolution of melt in the course of its formation.