390 resultados para after Bleil and von Dobeneck (2003)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coastal systems, are often subjected to high anthropogenic pressure, which makes it necessary to develop new techniques to assess the environmental impacts caused by such human activity. This paper presents the first results obtained during the development and implementation of a new equipment of submarine geophysics survey oriented to integrated coastal zone management (ICZM). It is based on the drag of a submarine in contact with the sea-bottom. The submarine is equipped with an electromagnetic sensor which allows the measurement of the magnetic susceptibility and electrical conductivity of the surface sediments continuously and to a depth of sediment of 40 cm. This system, once improved, will allow us to obtain valuable information for monitoring the environmental quality of coastal areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cores from Sites 1135, 1136, and 1138 of Ocean Drilling Program Leg 183 to the Kerguelen Plateau (KP) provide the most complete Paleocene and Eocene sections yet recovered from the southern Indian Ocean. These nannofossil-foraminifer oozes and chalks provide an opportunity to study southern high-latitude biostratigraphic and paleoceanographic events, which is the primary subject of this paper. In addition, a stable isotope profile was established across the Cretaceous/Tertiary (K/T) boundary at Site 1138. An apparently complete K/T boundary was recovered at Site 1138 in terms of assemblage succession, isotopic signature, and reworking of older (Cretaceous) nannofossil taxa. There is a significant color change, a negative carbon isotope shift, and nannofossil turnover. The placement of the boundary based on these criteria, however, is not in agreement with the available shipboard paleomagnetic stratigraphy. We await shore-based paleomagnetic study to confirm or deny those preliminary results. The Paleocene nannofossil assemblage is, in general, characteristic of the high latitudes with abundant Chiasmolithus, Prinsius, and Toweius. Placed in context with other Southern Ocean sites, the biogeography of Hornibrookina indicates the presence of some type of water mass boundary over the KP during the earliest Paleocene. This boundary disappeared by the late Paleocene, however, when there was an influx of warm-water discoasters, sphenoliths, and fasciculiths. This not only indicates that during much of the late Paleocene water temperatures were relatively equable, but preliminary floral and stable isotope analyses also indicate that a relatively complete record of the late Paleocene Thermal Maximum event was recovered at Site 1135. It was only at the beginning of the middle Eocene that water temperatures began to decline and the nannofossil assemblage became dominated by cool-water species while discoaster and sphenolith abundances and diversity were dramatically reduced. One new taxonomic combination is proposed, Heliolithus robustus Arney, Ladner, and Wise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the key importance of altered oceanic mantle as a repository and carrier of light elements (B, Li, and Be) to depth, its inventory of these elements has hardly been explored and quantified. In order to constrain the systematics and budget of these elements we have studied samples of highly serpentinized (>50%) spinel harzburgite drilled at the Mid-Atlantic Ridge (Fifteen-Twenty Fracture zone, ODP Leg 209, Sites 1272A and 1274A). In-situ analysis by secondary ion mass spectrometry reveals that the B, Li and Be contents of mantle minerals (olivine, orthopyroxene, and clinopyroxene) remain unchanged during serpentinization. B and Li abundances largely correspond to those of unaltered mantle minerals whereas Be is close to the detection limit. The Li contents of clinopyroxene are slightly higher (0.44-2.8 µg/g) compared to unaltered mantle clinopyroxene, and olivine and clinopyroxene show an inverse Li partitioning compared to literature data. These findings along with textural observations and major element composition obtained from microprobe analysis suggest reaction of the peridotites with a mafic silicate melt before serpentinization. Serpentine minerals are enriched in B (most values between 10 and 100 µg/g), depleted in Li (most values below 1 µg/g) compared to the primary phases, with considerable variation within and between samples. Be is at the detection limit. Analysis of whole rock samples by prompt gamma activation shows that serpentinization tends to increase B (10.4-65.0 µg/g), H2O and Cl contents and to lower Li contents (0.07-3.37 µg/g) of peridotites, implying that-contrary to alteration of oceanic crust-B is fractionated from Li and that the B and Li inventory should depend essentially on rock-water ratios. Based on our results and on literature data, we calculate the inventory of B and Li contained in the oceanic lithosphere, and its partitioning between crust and mantle as a function of plate characteristics. We model four cases, an ODP Leg 209-type lithosphere with almost no igneous crust, and a Semail-type lithosphere with a thick igneous crust, both at 1 and 75 Ma, respectively. The results show that the Li contents of the oceanic lithosphere are highly variable (17-307 kg in a column of 1 m * 1 m * thickness of the lithosphere (kg/col)). They are controlled by the primary mantle phases and by altered crust, whereas the B contents (25-904 kg/col) depend entirely on serpentinization. In all cases, large quantities of B reside in the uppermost part of the plate and could hence be easily liberated during slab dehydration. The most prominent input of Li into subduction zones is to be expected from Semail-type lithosphere because most of the Li is stored at shallow levels in the plate. Subducting an ODP Leg 209-type lithosphere would mean only very little Li contribution from the slab. Serpentinized mantle thus plays an important role in B recycling in subduction zones, but it is of lesser importance for Li.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Controls of sediment dynamics at the Galician continental slope (NW Iberia) during the past 30 ka were reconstructed from three new gravity cores (GeoB11035-1, 130206-1, 13071-1) based on sedimentological (e.g. sortable silt, IRD), micropalaeontological (e.g. coccoliths), geochemical (AMS 14C, XRF) and geophysical (e.g. magnetic susceptibility) diagnostics. The data are consistent with existing regional knowledge that, during marine isotope stages 3-1, variations in detrital input, marine productivity and sea level were the essential drivers of sediment availability on the slope, whereas deep-water current velocities controlled sediment deposition: (1) the period prior to 30 cal ka BP is characterized by minor but systematic variations in various proxies which can be associated with D-O cycles; (2) between 30 and 18 cal ka BP, high detrital input and steady slope-parallel currents led to constant sedimentation; (3) from the LGM until 10 cal ka BP, the shelf-transgressive sea-level rise increased the detrital particle flux; sedimentation was influenced by significantly enhanced deep-water circulation during the Bølling/Allerød, and subsequent slowing during the Younger Dryas; (4) an abrupt and lasting change to hemipelagic sedimentation at ca. 10 cal ka BP was probably due to Holocene warming and decelerated transgression; (5) after 5 cal ka BP, additional input of detrital material to the slope is plausibly linked to the evolution of fine-grained depocentres on the Galician shelf, this being the first report of this close shelf-slope sedimentary linkage off NW Iberia. Furthermore, there is novel evidence of the nowadays strong outer shelf Iberian Poleward Current becoming established at about 15.5 cal ka BP. The data also demonstrate that small-scale morphologic features and local pathways of sediment export from the neighbouring shelf play an important role for sediment distribution on the NW Iberian slope, including a hitherto unknown sediment conduit off the Ría de Arousa. By implication, the impact of local morphology on along- and down-slope sediment dynamics is more complex than commonly considered, and deserves future attention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic iron minerals are widespread and indicative sediment constituents in estuarine, coastal and shelf systems. We combine environmental magnetic, sedimentological and numerical methods to identify magnetite-enriched placer-like zones in a complex coastal system and delineate their formation mechanisms. Magnetic susceptibility and remanence measurements on 245 surficial sediment samples collected in and around Tauranga Harbour, the largest barrier-enclosed tidal estuary of New Zealand, reveal several discrete enrichment zones controlled by local hydrodynamic conditions. Active magnetite enrichment takes place in tidal channels, which feed into two coast-parallel nearshore magnetite-enriched belts centered at water depths of 6-10 m and 10-20 m. A close correlation between magnetite content and magnetic grain size was found, where higher susceptibility values are associated within coarser magnetic crystal sizes. Two key mechanisms for magnetite enrichment are identified. First, tide-induced residual currents primarily enable magnetite enrichment within the estuarine channel network. A coast-parallel, fine sand magnetite enrichment belt in water depths of less than 10 m along the barrier island has a strong decrease in magnetite content away from the southern tidal inlet and is apparently related to active coast-parallel transport combined with mobilizing surf zone processes. A second, less pronounced, but more uniform magnetite enrichment belt at 10-20 m water depth is composed of non-mobile, medium-coarse-grained relict sands, which have been reworked during post-glacial sea level transgression. We demonstrate the potential of magnetic methods to reveal and differentiate coastal magnetite enrichment patterns and investigate their formative mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data set contains measurements of plant height: vegetative height (length of the main axis) in 2003 from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the Main Experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2003, plant height was recorded twice a year just before biomass harvest (during peak standing biomass in late May and in late August). For 30 target plant individuals harvested at 10 cm distances along a 5 m transect in a control area at the margin of each experimental plot, vegetative height (length of the main axis) was measured as the length of the main axis of the plant. Provided is the mean over the measured plants per plot.

Relevância:

100.00% 100.00%

Publicador: