301 resultados para Yenisei expedition, 1875-1876.
Resumo:
In 1937 the "Meteor" performed the cruises of the first part of the "Deutsche Nordatlantische Expedition". This publication treats seven stations of three-day-anchoring occupied during that time, five of which are located on the shelf, one on the continental slope and one on a ridge between the Capverde islands. The Bohnecke current meter, an instrument developed for the expedition, is described briefly and it's accuracy studied by comparing the measurements of two instruments which operated simultaneously at the same depth. It is shown that it is very sensitive for movements of the anchored ship because of the very short measuring intervall (2 minutes). The influence of the ship's movements could not be eliminated completely, the mode of using the instrument at different depths being unsuitable for this. Considering the stratification the accuracy of it's representation by the mean temperature and salinity distributionis studied. It is shown that under certain conditions a distribution estimated from observed values gives more exact results. This especially applies to the TS-diagram. Station Meteor336, located on the shelf near Cape Juby, shows temperatures 4 °C less than the open ocean and so belongs to the area of upwelling. During the observation period, however, internal tides are prominent. The diurnal component is of considerable influence, the distinction from inertial oscillations (25.5 hours) not being possible, however. Station Meteor341, on the shelf off Spanish-Sahara, gives an excellent example of the movements in the centre of the area of upwelling. Changing it's direction by 45° at the beginning of the measurements, the wind causes a change of current direction at all depths which, after some inertial oscillations (period 28.3 hours), settles down to a final value. At the beginning and the end of the observations the current at the upper depths is directed off-shore, the angle between current and wind being 22°, while at the lower depths it is orientated towards the shore. The depth of the upper homogenous layer gives the origin of the water transported upwards When during the inertial oscillations the current goes offshore at all depths temporarily, a sudden disturbance occurs in the temperature measurements. Station Meteor311 is located similar to station Meteor341 but was occupied one month earlier. At that time the wind situation was unnormal, the usual wind direction of 45° occuring at the end of the station. Therefore an unnormally high vertical shear of current speed and direction has been observed, the current vector being directed off-shore at the surface and near the bottom, towards the coast inbetween. The TS-diagram shows that the bottom water is replaced first so that upwelling does not occur during observation time. The state reached at the end of the station does not seem to be stable. Station Meteor369, on the continental slope, is governed by internal waves. Besides the internal tide of 12.4 hours a wave of 6.5 hour period is observed, being possibly amplified by the large bottom slope. In 40 - 60 m depth, where the thermocline is located, a wave with 3.3 hour period is observed which is argued to be an internal boundary wave. Station Meteor334 is located on the shelf NW of the mouth of the Senegal river. A marked temperature stratification, associated with large disturbances, and nearly constant salinity have been found there. The current was going slowly towards S or SW in the upper 20 - 30 m, towards N underneath. At the boundary of the current systems intense turbulence developed,including as it seems a water type of less salinity which is transported from the Senegal river by the lower current. Station Meteor327, located at 100 m depth between two of the Capverde islands, shows oceanic characteristics. The semidiurnal tide is found mainly, the diurnal component having considerable influence. Furtheron an internal wave of 6 hour period is seen the maximum amplitude of which is moving slowly downwards. Two possibilities of explaining it are discussed. Station Meteor366 is found in the area of ceasing winds off the coast of upper Guinea. The temperature there depends strongly on the depth, the salinity being nearly constant. The currents are divided into an upper and a lower system with large variations in both of them. A change of wind direction of nearly 90° is supposed to be the reason. The variations in salinity accordingly are interpreted as the influence of fresh water outflow from land which is felt in a different way at different wind directions. In the last section the daily changes in air and water temperature are studied. The upwelling having large influence on these, a centre of the area of upwelling can be located at about 100 miles north of Cape Blanc (Station Meteor311). The semidiurnal tidal component is compared with previous results for the Atlantic Ocean yielding considerable differences for the direction and time of occurence of the current maximum which might be due to the topographical influences around the shelf.