817 resultados para Trace elements in water
Resumo:
Deep Sea Drilling Project Leg 74 drilled basement on the Walvis Ridge at Sites 525, 527, and 528. These sites are located on the crest and flanks of the segment of the Ridge about 68 to 70 m.y. old in the central province of the Ridge. Each site has a number of distinct subaqueous flows separated by sediment layers. Although variation in geochemistry among units and sites is related in part to alteration or crystal fractionation, some is caused by small-scale compositional variation in the mantle source of the basalts. Leg 74 basalts are similar to other basalts recovered from the Walvis Ridge and the Rio Grande Rise. They show distinct compositional differences to mid-ocean ridge basalts in general, to those recovered from the South Atlantic at this latitude, and to basalts presently erupting in Tristan da Cunha. The composition of the Walvis Ridge basalts does not suggest simple mixtures of present-day MORB and Tristan da Cunha melts. If the Walvis Ridge represents the trace of the Tristan da Cunha hot spot as the plates separated, then the composition of the mantle source has differed at different times in the past, which suggests mantle heterogeneity.
Resumo:
The SES_GR2-Mesozooplankton faecal pellet production rates dataset is based on samples taken during August and September 2008 in the Northern Libyan Sea, Southern Aegean Sea and the North-Eastern Aegean Sea. Mesozooplankton is collected by vertical tows within the 0-100 m layer or within the Black sea water body mass layer in the case of the NE Aegean, using a WP-2 200 µm net equipped with a large non-filtering cod-end (10 l). Macrozooplankton organisms are removed using a 2000 µm net. A few unsorted animals (approximately 100) are placed inside several glass beaker of 250 ml filled with GF/F or 0.2 µm Nucleopore filtered seawater and with a 100 µm net placed 1 cm above the beaker bottom. Beakers are then placed in an incubator at natural light and maintaining the in situ temperature. After 1 hour pellets are separated from animals and placed in separated flasks and preserved with formalin. Pellets are counted and measured using an inverted microscope. Animals are scanned and counted using an image analysis system. Carbon- Specific faecal pellet production is calculated from a) faecal pellet production, b) individual carbon: Animals are scanned and their body area is measured using an image analysis system. Body volume is then calculated as an ellipsoid using the major and minor axis of an ellipse of same area as the body. Individual carbon is calculated from a carbon- total body volume of organisms (relationship obtained for the Mediterranean Sea by Alcaraz et al. (2003) divided by the total number of individuals scanned and c) faecal pellet carbon: Faecal pellet length and width is measured using an inverted microscope. Faecal pellet volume is calculated from length and width assuming cylindrical shape. Conversion of faecal pellet volume to carbon is done using values obtained in the Mediterranean from: a) faecal pellet density 1,29 g cm**3 (or pg µm**3) from Komar et al. (1981); b) faecal pellet DW/WW=0,23 from Elder and Fowler (1977) and c) faecal pellet C%DW=25,5 Marty et al. (1994).
Resumo:
The Okinawa Trough (OT) in the East Asian continental margin is characterized by thick terrigenous sediment and ubiquitous volcanic-hydrothermal activities. In this study, the clays collected during IODP Expedition 331 to the middle OT (Iheya North Knoll) were analyzed for mineralogical and geochemical compositions. By comparing with the clays from the East China Sea shelf and surrounding rivers, we examine different clay origins. The hydrothermal field in the mid-OT is dominated by Mg-rich chlorite, while the recharge zone has clay mineral assemblages similar to the shelf and rivers, showing high content of illite, subordinate chlorite and kaolinite and scarce smectite. Compared to the terrigenous clays, the hydrothermal clays in the OT have high concentrations of Mg, Mn and Zr but low Fe, Na, K, Ca, Ba, Sr, P, Sc and Ti, while the hydrothermal clays in the mid-ocean ridge are relatively enriched in Fe and V and depleted in Al, Mg, Zr, Sc and Ti. Different fractionation patterns of rare earth elements also register in the terrigenous and hydrothermal clays, diagnostic of variable clay origins. We infer that the OT hydrothermal clay was primarily formed by the chemical alteration of detrital sediments subject to the hydrothermal fluids. The remarkably different compositions of hydrothermal clays between the sediment-rich back arc basin like OT and the sediment-starved ocean ridge suggest different physical and chemical processes of hydrothermal fluids and fluid-rock/sediment reactions under various geologic settings.