172 resultados para Sterry, Paul: Birds of the Mediterranean : a photographic guide


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to characterize the provenance of lithogenic surface sediments from the Eastern Mediterranean Sea (EMS), residual (leached) fraction of 34 surface samples have been analysed for their 143Nd/144Nd and 87Sr/86Sr isotope ratios. The sample locations bracket all important entrances of riverine suspended matter into the EMS as well as all sub-basins of the EMS. The combined analyses of these two isotope ratios provide a precise characterization of the lithogenic fraction of surface sediments and record their dilution towards the central sub-basins. We reconstruct provenance and possible pathways of riverine dispersal and current redistribution, assuming more or less homogenous isotopic signatures and flux rates of the eolian fraction over the EMS. Lithogenic sediments entering the Ionian Sea from the Calabrian Arc and the Adriatic Sea are characterized by high 87Sr/86Sr isotope ratios and low epsilon-Nd(0) values (average 87Sr/86Sr=0.718005 and epsilon-Nd(0)=-11.06, n=5). Aegean Sea terrigenous sediments show an average ratio of 87Sr/86Sr=0.713089 (n=5) and values of epsilon-Nd(0)=-7.89 (n=5). The Aegean isotopic signature is traceable up to the southwest, south, and southeast of Crete. The sediment loads entering the EMS via the Aegean Sea are low and spread out mainly through the Strait of Casos (east of Crete). Surface sediments from the eastern Levantine Basin are marked by the highest epsilon-Nd(0) values (-3.3, n=6) and lowest 87Sr/86Sr isotope ratios (average 0.709541, n=6), reflecting the predominant input of the Nile sediment. The influence of the Nile sediment is traceable up to the NE-trending, eastern flank of the Mediterranean Ridge. The characterization of the modern riverine dispersal and eolian flux, based on isotope data, may serve as a tool to reconstruct climate-coupled variations of lithogenic sediment input into the EMS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pore water chemistry of mud volcanoes from the Olimpi Mud Volcano Field and the Anaximander Mountains in the eastern Mediterranean Sea have been studied for three major purposes: (1) modes and velocities of fluid transport were derived to assess the role of (upward) advection, and bioirrigation for benthic fluxes. (2) Differences in the fluid chemistry at sites of Milano mud volcano (Olimpi area) were compiled in a map to illustrate the spatial heterogeneity reflecting differences in fluid origin and transport in discrete conduits in near proximity. (3) Formation water temperatures of seeping fluids were calculated from theoretical geothermometers to predict the depth of fluid origin and geochemical reactions in the deeper subsurface. No indications for downward advection as required for convection cells have been found. Instead, measured pore water profiles have been simulated successfully by accounting for upward advection and bioirrigation. Advective flow velocities are found to be generally moderate (3-50 cm/y) compared to other cold seep areas. Depth-integrated rates of bioirrigation are 1-2 orders of magnitude higher than advective flow velocities documenting the importance of bioirrigation for flux considerations in surface sediments. Calculated formation water temperatures from the Anaximander Mountains are in the range of 80 to 145 °C suggesting a fluid origin from a depth zone associated with the seismic decollement. It is proposed that at that depth clay mineral dehydration leads to the formation and advection of fluids reduced in salinity relative to sea water. This explains the ubiquitous pore water freshening observed in surface sediments of the Anaximander Mountain area. Multiple fluid sources and formation water temperatures of 55 to 80 °C were derived for expelled fluids of the Olimpi area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the glacial to postglacial delta13C differences between endobenthic Uvigerina peregrina species from the Alboran basin and from other mediterranean basins, changes in the fertility of the western part of this basin during the last deglaciation are reconstructed. As a result of particulate organic carbon (POC) rain from the highly productive upwelling cell along the northwestern margin of the Alboran basin, U. peregrina is presently depleted by about 1.6per mil with respect to the measured delta13C values of bottom water SumCO2 and by about 0.9per mil with respect to specimens from other areas of the western Mediterranean or from the Gulf of Cadiz within the Mediterranean Outflow Water. The Uvigerina delta13C difference between the Alboran Sea and the Gulf of Cadiz (Delta delta13C), was close to 0per mil at the beginning of the last deglaciation and during the late glacial time. This suggests that highly fertile systems set in the Alboran Sea near 16 kyr B.P. Two rapid increases in the Delta delta13C offset are recorded near 15 kyr and 11 kyr B.P. Fluctuations around 1.1 to 1.2per mil occurred during the early Holocene, and a maximum was reached near 9 kyr B.P. After 4 kyr the Delta delta13C offset decreased to its present-day average value of 0.9per mil. Changes in the intensity of surficial production cannot account for all the observed fluctuations, especially in the early Holocene time. A strong decrease in the intermediate and deep water ventilation of the Alboran basin may have occurred near 8-9 kyr, in phase with the last stagnant phase in the eastern Mediterranean and the deposition of Sapropel S1. As a result, the redistribution and remineralization at depth of the produced organic matter was incomplete. The POC rain reaching the sediment was locally intensified and caused the lowering of the delta13C values of endobenthic foraminifers such as U. peregrina. The benthic 13C signal suggests that the difference between the Alboran Sea and the Gulf of Cadiz was at its maximum. At the same time, an important modification in the water masses structure may have occurred near 9-8 kyr B.P. The deepening of the permanent pycnocline probably related to a thicker Atlantic jet at a stage of high sea level stand is recorded by the replacement of the right coiling N. pachyderma dominance (coincident with a shallow pycnocline) by the G. inflata dominance (coincident with a deep pycnocline). Diatom abundances were strongly reduced indicating an important modification of the productive system. The glacial-postglacial evolution of productivity within the Alboran basin was therefore more complex than in the adjacent Atlantic Ocean and opposite to the global one which displays a general increase in productivity during glacial time. Although it is the global budget of paleoproductivity that would drive the partitioning of carbon within the ocean, local or regional discrepancies with the global glacial-interglacial model must be addressed. Local winds and regional atmospheric pressure systems, which are the forcing factors for circulation and exchange with the Atlantic, control the fertile systems of the Alboran basin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Invasive species allow an investigation of trait retention and adaptations after exposure to new habitats. Recent work on corals from the Gulf of Aqaba (GoA) shows that tolerance to high temperature persists thousands of years after invasion, without any apparent adaptive advantage. Here we test whether thermal tolerance retention also occurs in another symbiont-bearing calcifying organism. To this end, we investigate the thermal tolerance of the benthic foraminifera Amphistegina lobifera from the GoA (29° 30.14167 N 34° 55.085 E) and compare it to a recent "Lessepsian invader population" from the Eastern Mediterranean (EaM) (32° 37.386 N, 34°55.169 E). We first established that the studied populations are genetically homogenous but distinct from a population in Australia, and that they contain a similar consortium of diatom symbionts, confirming their recent common descent. Thereafter, we exposed specimens from GoA and EaM to elevated temperatures for three weeks and monitored survivorship, growth rates and photophysiology. Both populations exhibited a similar pattern of temperature tolerance. A consistent reduction of photosynthetic dark yields was observed at 34°C and reduced growth was observed at 32°C. The apparent tolerance to sustained exposure to high temperature cannot have a direct adaptive importance, as peak summer temperatures in both locations remain <32°C. Instead, it seems that in the studied foraminifera tolerance to high temperature is a conservative trait and the EaM population retained this trait since its recent invasion. Such pre-adaptation to higher temperatures confers A. lobifera a clear adaptive advantage in shallow and episodically high temperature environments in the Mediterranean under further warming.