402 resultados para Sound Duration
Resumo:
1. In Polar Regions, the extent and dynamics of sea-ice are changing. This affects the ocean productivity which consecutively impacts plankton communities and polar top predators like penguins. Yet, the underlying behavioural and physiological mechanisms remain poorly understood. 2. Here we monitored the ecophysiological responses of Adelie penguin (Pygoscelis adeliae) pairs during two seasons of contrasting timing of sea-ice retreat. Beside classical breeding parameters like foraging trip duration, body mass and reproductive success, we also investigated food-related stress (via plasma corticosterone concentration), nutritional state (via metabolite levels) and the use of penguins' habitat (via blood isotopic values). 3. Body mass and reproductive success remained unchanged but foraging trips were shorter when sea-ice retreated earlier. Constant plasma corticosterone concentrations indicated that none of the feeding conditions resulted in a food-related stress. However metabolite levels were lower when sea-ice retreated early, suggesting that the foraging performance and the quality/quantity of food differed. Indeed isotopic ratios indicated that coastal prey like fish contributed more to the penguins' diet when sea-ice retreated prematurely. 4. The early sea-ice retreat was related to higher chlorophyll concentrations, known to favour krill recruitment. Paradoxically, this was not associated to a higher krill contribution in the penguins' diet. We propose that a shift in the phytoplankton quality (rather than quantity), affecting krill recruitment, forced penguins to switch to more available prey like coastal fish. 5. In some Antarctic regions, sea-ice is retreating earlier and earlier. In the present study, even though the timing of sea-ice retreat and the consecutive ocean productivity differed drastically between the 2 years, Adelie penguins were not severely affected because they were able to adjust their at-sea behaviour and thus maintained their body condition and reproductive success unchanged. 6. This suggests that the timing of sea-ice retreat does not represent an important threat to populations of Adelie penguins at least as long as alternative resources are still available and other environmental parameters like winter sea-ice extent are not dramatically altered.
Resumo:
From 0 to 277 m at Site 530 are found Holocene to Miocene diatom ooze, nannofossil ooze, marl, clay, and debrisflow deposits; from 277 to 467 m are Miocene to Oligocene mud; from 467 to 1103 m are Eocene to late Albian Cenomanian interbedded mudstone, marlstone, chalk, clastic limestone, sandstone, and black shale in the lower portion; from 1103 to 1121 m are basalts. In the interval from 0 to 467 m, in Holocene to Oligocene pelagic oozes, marl, clay, debris flows, and mud, velocities are 1.5 to 1.8 km/s; below 200 m velocities increase irregularly with increasing depth. From 0 to 100 m, in Holocene to Pleistocene diatom and nannofossil oozes (excluding debris flows), velocities are approximately equivalent to that of the interstitial seawater, and thus acoustic reflections in the upper 100 m are primarily caused by variations in density and porosity. Below 100 or 200 m, acoustic reflections are caused by variations in both velocity and density. From 100 to 467 m, in Miocene-Oligocene nannofossil ooze, clay, marl, debris flows, and mud, acoustic anisotropy irregularly increases to 10%, with 2 to 5% being typical. From 467 to 1103 m in Paleocene to late Albian Cenomanian interbedded mudstone, marlstone, chalk, clastic limestone, and black shale in the lower portion of the hole, velocities range from 1.6 to 5.48 km/s, and acoustic anisotropies are as great as 47% (1.0 km/s) faster horizontally. Mudstone and uncemented sandstone have anisotropies which irregularly increase with increasing depth from 5 to 10% (0.2 km/s). Calcareous mudstones have the greatest anisotropies, typically 35% (0.6 km/s). Below 1103 m, basalt velocities ranged from 4.68 to 4.98 km/s. A typical value is about 4.8 km/s. In situ velocities are calculated from velocity data obtained in the laboratory. These are corrected for in situ temperature, hydrostatic pressure, and porosity rebound (expansion when the overburden pressure is released). These corrections do not include rigidity variations caused by overburden pressures. These corrections affect semiconsolidated sedimentary rocks the most (up to 0.25 km/s faster). These laboratory velocities appear to be greater than the velocities from the sonic log. Reflection coefficients derived from the laboratory data, in general, agree with the major features on the seismic profiles. These indicate more potential reflectors than indicated from the reflection coefficients derived using the Gearhart-Owen Sonic Log from 625 to 940 m, because the Sonic Log data average thin beds. Porosity-density data versus depth for mud, mudstone, and pelagic oozes agree with data for similar sediments as summarized in Hamilton (1976). At depths of about 400 m and about 850 m are zones of relatively higher porosity mudstones, which may suggest anomalously high pore pressure; however, they are more probably caused by variations in grain-size distribution and lithology. Electrical resistivity (horizontal) from 625 to 950 m ranged from about 1.0 to 4.0 ohm-m, in Maestrichtian to Santonian- Coniacian mudstone, marlstone, chalk, clastic limestone, and sandstone. An interstitial-water resistivity curve did not indicate any unexpected lithology or unusual fluid or gas in the pores of the rock. These logs were above the black shale beds. From 0 to 100 m at Sites 530 and 532, the vane shear strength on undisturbed samples of Holocene-Pleistocene diatom and nannofossil ooze uniformly increases from about 80 g/cm**2 to about 800 g/cm**2. From 100 to 300 m, vane shear strength of Pleistocene-Miocene nannofossil ooze, clay, and marl are irregular versus depth with a range of 500 to 2300 g/cm**2; and at Site 532 the vane shear strength appears to decrease irregularly and slightly with increasing depth (gassy zone). Vane shear strength values of gassy samples may not be valid, for the samples may be disturbed as gas evolves, and the sediments may not be gassy at in situ depths.