521 resultados para Silicic Magmas
Resumo:
Lavas from several major bathymetric highs in the eastern Indian Ocean that are likely to have formed as Early to Middle Cretaceous manifestations of the Kerguelen hotspot are predominantly tholeiitic; so too are glass shards from Eocene to Paleocene volcanic ash layers on Broken Ridge, which are believed to have come from eruptions on the Ninetyeast Ridge. The early dominance of tholeiitic compositions contrasts with the more recent intraplate, alkalic volcanism of the Kerguelen Archipelago. Isotopic and incompatible-element ratios of the plateau lavas are distinct from those of Indian mid-ocean ridge basalts; their Nd, Sr, 207Pb/204Pb and 2078b/204Pb isotopic ratios overlap with but cover a much wider range than measured for more recent oceanic products of the Kerguelen hotspot (including the Ninetyeast Ridge) or, indeed, oceanic lavas from any other hotspot in the world. Samples from the Naturaliste Plateau and ODP Site 738 on the southern tip of the Kerguelen Plateau are particularly noteworthy, with e-Nd(T) = -13 to -7, (87Sr/86Sr)T=0.7090 to 0.7130 and high 207Pb/204Pb relative to 206Pb/204Pb. In addition, the low-e-Nd(T) Naturaliste Plateau samples are elevated in SiO2 (>54 wt%). In contrast to "DUPAL" oceanic islands such as the Kerguelen Archipelago, Pitcairn and Tristan da Cunha, the plateau lavas with extreme isotopic characteristics also have relative depletions in Nb and Ta (e.g., Th/Ta, La Nb > primitive mantle values); the lowest e-Nd(T) and highest Th/Ta and La Nb values occur at sites located closest to rifted continental margins. Accepting a Kerguelen plume origin for the plateau lavas, these characteristics probably reflect the shallow-level incorporation of continental lithosphere in either the head of the early Kerguelen plume or in plume-derived magmas, and suggest that the influence of such material diminished after the period of plateau construction. Contamination of asthenosphere with the type of material affecting Naturaliste Plateau and Site 738 magmatism appears unlikely to be the cause of low-206Pb/204Pb Indian mid-ocean ridge basalts. Finally, because isotopic data for the plateaus do not cluster or form converging arrays in isotope-ratio plots, they provide no evidence for either a quickly evolving, positive ?Nd, relatively high-206Pb/204Pb plume composition, or a plume source dominated by mantle with e-Nd of -3 to ~0.
Resumo:
The 720 m of igneous basement that was penetrated at Site 786 of Ocean Drilling Program Leg 125 consists of boninite-series volcanics. Bronzite andesites dominate the lithology and primitive magmas of high-Ca, intermediate-Ca, and low-Ca boninite are present in subordinate amounts. Sparsely phyric boninites typically contain olivine and orthopyroxene phenocrysts with Mg numbers [= Mg/(Mg + Fe) in moles] between 86% and 87%. Their high whole-rock Mg numbers, and the absence of zonation in the phenocrysts, imply equilibration at temperatures probably between 1200° and 1250°C, and 20° to 50°C below their liquidus. Equilibrium olivine and orthopyroxene have identical Mg numbers, and Mg/Fe partitioning between these minerals and the melt thus can be described with a single Kd. The invariably phenocryst-rich bronzite andesites contain Plagioclase that has spectacular zoning and mafic phases that can be as magnesian as those of the boninite parent. The most evolved melts are rhyolites with hypersthene, Plagioclase (An50), and magnetite. Eruption temperatures for the rhyolites are estimated at about 1000°C. Some magmas contain ferroactinolite in the groundmass, which is most likely a secondary, low-temperature phase. The locally large contrasts in degree of alteration are consistent with multiple episodes of magmatic activity. However, all igneous events produced boninite volcanics. Only the first, the edifice-building episode, gave rise to differentiated magmas. Differentiation of parental boninites took place by limited fractional crystallization, producing bronzite andesites. The erupted andesites, dacites and rhyolites are filter pressed extracts from these bronzite andesite magmas, which, as a result, have accumulated crystals. Subsequent younger igneous events produced high-Ca and intermediate-Ca boninites which intruded as dikes and sills throughout the basement sequence. The mineralogy of the dikes and sills reflects variable degrees of subliquidus cooling of the magma before emplacement.
Resumo:
Very rare, halogen-rich andesite melt inclusions (HRA) in bytownitic plagioclase phenocrysts (An89-90) from tephra fallout of the Izu arc volcanic front (Izu VF) provide new insights into the processes of fluid release from slab trenchward to the volcanic front in a cool subduction zone. These HRA are markedly enriched in Cl, F and Li - by factors of up to 8 (Cl, F) and 1.5 (Li) - but indistinguishable with respect to the fluid-mobile large-ion lithophile elements (LILE; K, Sr, Rb, Cs, Ba, Pb, U), rare earths (REE) or high field strength elements (HFSE) from the low-K tholeiitic magmas of the Izu VF. We suggest that the chemical signature of the HRA reflects the presence of a fluid in the mantle source that originated from the serpentinized mantle peridotite above the metacrust. This "wedge serpentinite" presumably formed by fluid infiltration beneath the forearc and was subsequently down-dragged with the slab to arc front depths. The combined evidence from the Izu VF (?110 km above slab) and the outer forearc serpentinite seamounts (~25 to 30 km above slab) suggests that the slab flux of B and Cl is highest beneath the forearc, and decreases with increasing slab depths. In contrast, the slab flux of Li is minor beneath the forearc, but increases with depth. Fluorine may behave similarly to Li, whereas the fluid-mobile LILE appear to be largely retained in the slab trenchward from the Izu VF. Consequently, the chemical signatures of both Izu trench sediments and basaltic rocks appear preserved until arc front depths.
Resumo:
New petrological and geochemical data were obtained for basalts recovered during cruise 24 of the R/V "Akademik Nikolay Strakhov" in 2006. These results significantly contributed to the understanding of the formation of tholeiitic magmatism at the northern end of the Knipovich Ridge of the Polar Atlantic. Dredging was performed for the first time both in the rift valley and on the flanks of the ridge. It showed that the conditions of magmatism have not changed since at least 10 Ma. The basalts correspond to slightly enriched tholeiites, whose primary melts were derived at the shallowest levels and were enriched in Na and depleted in Fe (Na-TOR type). The most enriched basalts are typical of the earlier stages of the opening and were found on the flanks of the ridge in its northernmost part. Variations in the ratios of Sr, Nd, and Pb isotopes and lithophile elements allowed us to conclude that the primary melts generated beneath the spreading zone of the Knipovich Ridge were modified by the addition of the enriched component that was present both in the Neogene and Quaternary basalts of Spitsbergen Island. Compared with the primitive mantle, the extruding magmas were characterized by positive Nb and Zr anomalies and a negative Th anomaly. The formation of primary melts involved melting of the metasomatized depleted mantle reservoir that appeared during the early stages of opening of the Norwegian-Greenland Basin and transformation of the paleo-Spitsbergen Fault into the Knipovich spreading ridge, which was accompanied by magmatism in western Spitsbergen during its separation from the northern part of Greenland.
Resumo:
Cation exchange experiments (ammonium acetate and cation resin) on celadonite-smectite vein minerals from three DSDP holes demonstrate selective removal of common Sr relative to Rb and radiogenic Sr. This technique increases the Rb/Sr ratio by factors of 2.3 to 22 without significantly altering the age of the minerals, allowing easier and more precise dating of such vein minerals. The ages determined by this technique (Site 261 - 121.4+/-1.6 m.y.; Site 462A - 105.1+/-2.8 m.y.; Site 516F - 69.9+/-2.4 m.y.) are 34, 54 and 18 m.y. younger, respectively, than the age of crust formation at the site; in the case of site 462A, the young age is clearly related to off-ridge emplacement of a massive sill/flow complex. At the other sites, either the hydrothermal circulation systems persisted longer than for normal crust (10-15 m.y.), or were reactivated by off-ridge igneous activity. Celadonites show U and Pb contents and Pb isotopic compositions little changed from their basalt precursors, while Th contents are significantly lower. Celadonites thus have unusually high alkali/U,Th ratios and low Th/U ratios. If this celadonite alteration signature is significantly imprinted on oceanic crust as a whole, it will lead to very distinctive Pb isotope signatures for any hot spot magmas which contain a component of aged subducted recycled oceanic crust. Initial Sr isotope ratios of ocean crust vein minerals (smectite, celadonite, zeolite, calcite) are intermediate between primary basalt values and contemporary sea water values and indicate formation under seawaterdominated systems with effective water/rock ratios of 20-200.
Resumo:
An isotope-geochemical study of Eocene-Oligocene magmatic rocks from the Western Kamchatka-Koryak volcanogenic belt revealed lateral heterogeneity of mantle magma sources in its segments: Western Kamchatka, Central Koryak, and Northern Koryak ones. In the Western Kamchatka segment magmatic melts were generated from isotopically heterogeneous (depleted and/or insignificantly enriched) mantle sources significantly contaminated by quartz-feldspathic sialic sediments; higher 87Sr/86Sr (0.70429-0.70564) and lower 143Nd/144Nd [eNd(T) = 0.06-2.9] ratios in volcanic rocks from the Central Koryak segment presumably reflect contribution of an enriched mantle source; high positive eNd(T) and low 87Sr/86Sr ratios in magmatic rocks from the Northern Koryak segment area indicate their derivation from an isotopically depleted mantle source without significant contamination by sialic or mantle material enriched in radiogenic Sr and Nd. Significantly different contamination histories of Eocene-Oligocene mantle magmas in Kamchatka and Koryakia are related to their different thermal regimes: higher heat flow beneath Kamchatka led to crustal melting and contamination of mantle suprasubduction magmas by crustal melts. Cessation of suprasubduction volcanism in the Western Kamchatka segment of the continental margin belt was possibly related to accretion of the Achaivayam-Valagin terrane 40 Ma ago, whereas suprasubduction activity in the Koryak segment stopped due to closure of the Ukelayat basin in Oligocene.
Resumo:
During ODP Leg 107, the basement of the Tyrrhenian Sea was drilled at Site 650, located in the Marsili basin, and at Sites 651 and 655, both located in the Vavilov basin. In addition, a lava flow was drilled at Site 654 on the Sardinia rifted margin. Mineral and whole rock major and trace element chemistry, including rare earth element (REE) and Sr and Nd isotopic ratios, were determined in samples of these rocks. Site 654 lava was sampled within uppermost Pliocene postrift sediments. This lava is a basaltic andesite of intraplate affinity, and is analogous to some Plio-Pleistocene tholeiitic lavas from Sardinia. Site 650 basalts, drilled beneath 1.7-1.9-Ma-old basal sediment, are strongly altered and vesicular suggesting a rapid subsidence of the Marsili basin. Based on incompatible trace elements, these basalts show calc-alkaline affinity like some products of the Marsili Seamount and the Eolian arc. The basement of the two sites drilled within Vavilov basin shows contrasting petrologies. Site 655, located along the Gortani ridge in the western part of the basin, drilled a 116-m-thick sequence of basalt flows beneath 3.4-3.6-Ma-old basal sediments. These basalts are chemically relatively homogeneous and show affinity to transitional MORB. Four units consisting of slightly differentiated basaltic lavas, have been identified. Site 655 basalts are geochemically similar to the high Ti lavas from DSDP Leg 42, Site 373 (Vavilov Basin). The basement at Site 651, overlain by 40 m of metalliferous dolostone covered by fossiliferous sediments with an age of 2 Ma, consists of two basalt units separated by a dolerite-albitite intrusive body; serpentinized harzburgites were drilled for 30 m at the base of the hole. The two basalt units of Site 651 are distinct petrochemically, though both show incompatible elements affinity with high-K calc-alkaline/calc-alkaline magmas from Eolian arc. The cpx chemistry and high K/Na ratio of the lower unit lavas suggest a weak alkaline tendency of potassic lineage. Leg 107 basement rock data, together with data from DSDP Site 373 and from dredged samples, indicate that the deepest basins of the central Tyrrhenian Sea are underlain by a complex back-arc basin crust produced by magmas with incompatible element affinities to transitional MORB (Site 655 and DSDP Site 373), and to calc-alkaline and high-K calc-alkaline converging plate margin basalts (Sites 650 and 651). This petrogenetic complexity is in accordance with the back-arc setting of the Vavilov and Marsili basins. Other back-arc basin basalts, particularly those from ensialic basins such as the Bransfield Strait (Antarctica), show a comparable petrogenetic complexity (cf., Sounders and Tarney, 1984).
Resumo:
The compositions, mineralogies, and textures of gabbros recovered in polymict breccias in Hole 453 indicate that they are the cumulus assemblages of calc-alkalic crystal fractional on that occurred beneath the West Mariana Ridge. They are among a class of gabbros known only from other calc-alkalic associations (e.g., the Lesser Antilles and the Peninsular Ranges batholith of Southern California) and differ from gabbros of stratiform complexes, ophiolites, and the ocean crust. Particularly abundant in the Hole 453 breccias are olivine-bearing gabbros with extremely calcic Plagioclase (An94-97) but with fairly iron-rich olivines (Fo76-77). Other gabbros contain biotite and amphibole and occur in breccias with fairly high-grade greenschist facies (amphibole-chlorite-stilpnomelane) metabasalts. One unusual gabbro has experienced almost complete subsolidus recrystallization to an assemblage of aluminous magnesio-hornblende, anorthite, and green hercynitic spinel. This reaction, the extremely calcic Plagioclase, the occurrence of biotite and amphibole, and the association with greenschist facies metamorphic rocks suggest that crystallization of the gabbros occurred at elevated P(H2O). Comparisons with other calc-alkalic gabbro suites suggest pressures in excess of 4 kbar (about 12 km depth). The gabbros were exposed by the early stages of opening of the Mariana Trough and imply that considerable uplift may have attended rifting. They were also subjected to hydrothermal alteration after breccia formation, resulting in formation of chlorite, epidote, actinolite, and prehnite. Temperatures of at least 200°C - and probably 350°C - were reached, and most likely could not have been attained without extrusion or intrusion of magmas nearby, even though no such rocks were cored.