169 resultados para SOUTHERN-HEMISPHERE
Resumo:
Sulphur isotope analyses are an important tool for the study of the natural sulphur cycle. On the northern hemisphere such studies of the atmospheric part of the cycle are practically impossible due to the high emission rate of anthropogenic sulphur. Merely in remote areas of the world such as the Antarctic 34S analyses can be used to identify the various sulphur sources (sea spray, biogenic und volcanic sources). We report here results of 34S measurements on sulphates from recent atmospheric precipitations (snow), lake waters, and salt efflorescences sampled in the Schirmacher Oasis and the Gruber Mountains, central Dronning Maud Land, East Antarctica. By plotting the delta 34S of precipitation versus % sea-spray sulphate the isotopic composition of the excess sulphate (which is probably of marine-biogenic origin) is extrapolated to be +4 per mil. Lake water sulphate and atmospheric precipitations have a comparable sulphur isotope composition (about +5 per mil). The analyzed secondary sulphates from the salt efflorescences, mainly gypsum and a few water-soluble sulphatcs (hexahydrite, epsomite, burkeite. and pickeringite), vary in their isotopic composition between about -12 and +8 per mil. This wide scatter is probably due to chemical weathering of primary sulphides having different delta 34S values in the substratum.
Resumo:
Based on a qualitative and quantitative evaluation of Recent sediments samples (top 3 cm of cores as well as Petersen grab samples) from the Drake Passage, between South America and Antarctica, the distribution of planktonic foraminifera and their relation to oceanographic conditions was investigated. The Antarctic Convergence - the northern limit of the cold Antarctic Surface Water - is shown to be of major importance in controlling the distributional pattern of planktonic species as well as their total numbers. South of the convergence, Globigerina pachyderma is usually the only species found in the sediment. It occurs with abundances not greater than 6000 per gram dry sediment, and at most stations less than 100 specimens per gram of dry sediment were recovered. At a number of deep-sea stations below 3700 m depth approx. no planktonic foraminifera were found at all. It is most probable, that at least some of these stations are located below the limit of CaCO3 dissolution. North of the Antarctic Convergence planktonic foraminiferal numbers are much higher and range from 1800 to 120000 per gram of dry sediment. Eight species are the major constituents of the population: Globigerina pachyderma, Globigerina bulloides, Globogerina quinqueloba, Globigerina inflata, Globorotalia truncatolinoides, Globorotalia scitula, Globigerinita glutinata and Globigerinita uvula. The widespread occurrence of Globorotalia truncatulinoides, which in the northern hemisphere is usually a subtropical form, is especially noteworthy. Another Globigerina, morphologically similar to G. pachyderma, has been recognized frequently north of the Antarctic Convergence. Globigerina megastoma which has its type area in the Drake Passage, has been found only rarely. Orbulina universa occurs in samples from the areas of higher water temperature around the South American Continent. Globigerina pachyderma is predominantly sinistrally coiled throughout the area investigated, but a slight increase in the percentage of dextrally coiled specimens may be noticed with increasing water temperature, i.e. from south to north.
Resumo:
The interaction between biogenic silica export and burial, paleoceanography, diatom species succession and mats formation was examined based on relative abundances data of Plio/Pleistocene diatoms from six cores recovered during ODP Leg 177 on a transect across the Antarctic Circumpolar Current (ACC) in the Atlantic sector of the Southern Ocean. Fragilariopsis kerguelensis, Actinocyclus ingens and species of the genus Thalassiothrix were the main contributors to the diatom assemblages. Three main steps marked the development of the silica system in the Southern Ocean: Step 1 (at ca. 2.77 Ma), establishment of increased biogenic silica burial in the Antarctic Circumpolar Current area, following the large-scale oceanic reorganization connected to the increased northern hemisphere glaciation; Step 2 (at ca. 1.93 Ma), the Antarctic Polar Front becomes the main biogenic silica sink, diatom mats are widespread, and are also found slightly to the north and south of the APF; Step 3 (at ca. 0.63 Ma), with the strong drop in abundance (and later extinction at 0.38 Ma) of A. ingens and the rise to dominance of F. kerguelensis, the system enters a glacial-interglacial mode, with diatom mats occurring during interglacials at the APF and in the Antarctic Zone, but disappearing north of it.
Resumo:
We present a Younger Dryas-Holocene record of the hydrogen isotopic composition of sedimentary plant waxes (dDwax) from the southern European Alps (Lake Ghirla, N-Italy) to investigate its sensitivity to climatic forcing variations in this mid-latitude region (45°N). A modern altitudinal transect of dD values of river water and leaf waxes in the Lake Ghirla catchment is used to test present-day climate sensitivity of dDwax. While we find that altitudinal effects on dDwax are minor at our study site, temperature, precipitation amount, and evapotranspiration all appear to influence dDwax to varying extents. In the lake-sediment record, dDwax values vary between -134 and -180 per mil over the past 13 kyr. The long-term Holocene pattern of dDwax parallels the trend of decreasing temperature and is thus likely forced by the decline of northern hemisphere summer insolation. Shorter-term fluctuations, in contrast, may reflect both temperature and moisture-source changes. During the cool Younger Dryas and Little Ice Age (LIA) periods we observe unexpectedly high dDwax values relative to those before and after. We suggest that a change towards a more D-enriched moisture source is required during these intervals. In fact, a shift from northern N-Atlantic to southern N-Atlantic/western Mediterranean Sea sources would be consistent with a southward migration of the Westerlies with climate cooling. Prominent dDwax fluctuations in the early and middle Holocene are negative and potentially associated with temperature declines. In the late Holocene (<4 kyr BP), excursions are partly positive (as for the LIA) suggesting a stronger influence of moisture-source changes on dDwax variation. In addition to isotopic fractionations of the hydrological cycle, changes in vegetation composition, in the length of the growing season, and in snowfall amount provide additional potential sources of variability, although we cannot yet quantitatively assess these in the paleo-record. We conclude that while our dDwax record from the Alps does contain climatic information, it is a complicated record that would require additional constraints to be robustly interpreted. This also has important implications for other water-isotope-based proxy records of precipitation and hydro-climate from this region, such as cave speleothems.