418 resultados para Russian Far East
Resumo:
Distribution trace element contents in the upper (up to 5 m) Holocene-Upper Pleistocene sediment layer along the northern and southern sublatitudinal profiles in the northern part of the Deryugin Trough is discussed. Mathematical processing of chemical analysis data has been made. On the basis of the cluster analysis 16 elements have been combined into 5 geochemical groups. Two of them (1 - Ag-Mo group and 2 - Mn-Ba-Ni-Sr group) were considered in detail. Analysis of Ag and Mo distributions in the sediments and findings of molybdenite permitted to conclude that enrichment of the sediments by these elements resulted from edaphic washing of magmatic rocks containing Ag-Mo mineralization and probably located on the northwestern slope of the Deryugin trough. The second geochemical group is most likely connected with hydrothermal barite mineralization found in the northeastern part of the Deryugin trough. Considering Mn distribution in bottom sediment cores supply of Mn was pulsating. This allows concluding that during Holocene - Late Pleistocene three cycles of hydrothermal activity occurred in the Deryugin Trough, and the most intensive one was in Holocene.
Resumo:
Pioneer information about chemical composition of river waters in the Wrangel Island has been obtained. It is shown that water composition reflects the lithogeochemical specifics of primary rocks and ore mineralization. In contrast to many areas of the Russian Far North river waters of the island are characterized by elevated background value of total mineralization (i.e., total dissolved solids, TDS) (0.3-2 g/l) and specific chemical type (SO4-Ca-Mg). This is related to abundance of Late Carboniferous gypsiferous and dolomitic sequences in the mountainous area of the island. It has also been established that salt composition of some streams is appreciably governed by supergene alterations of sulfide mineralization associated with quartz-carbonate vein systems. They make up natural centers of surface water contamination. Waters in such streams are characterized by low pH values (2.4-5.5), high TDS (up to 6-23 g/l) and SO4-Mg composition. These waters are also marked by anomalously high concentrations of heavy and non-ferrous metals, as well as REE, U, and Th.
Resumo:
Geological, petrochemical, and geochemical data are reported for volcanic rocks of a Cretaceous pull-apart basin in the Tan Lu strike-slip system, Asian continental margin. A comparison of these volcanic rocks with magmatic rocks from typical Cenozoic transform margins in the western North America and rift zones of Korea made it possible to distinguish some indicator features of transform-margin volcanic rocks. Magmatic rocks from strike-slip extension zones bear island-arc, intraplate, and occasionally depleted MORB geochemical signatures. In addition to calc-alkaline rocks there are bimodal volcanic series. The rocks are characterized by high K2O, MgO, and TiO2 contents. They show variable enrichment in LILE relative to HFSE, which is typical of island-arc magmas. At the same time they are rich in compatible transition elements, which is a characteristic of intraplate magmas. Trace element distribution patterns normalized to MORB or primitive mantle usually show a negative Ta-Nb anomaly typical of suprasubduction settings. Their Ta/Nb ratio is lower, whereas Ba/Nb, Ba/La, and La/Yb ratios are higher than those of some MORB and OIB. In terms of trace element systematics, for example, Ta-Th-Hf, Ba/La-(Ba/La)_n, (La/Sm)_n-La/Hf, and others, they fall within the area of mixing of magmas from several sources (island arc, intraplate, and depleted reservoirs). Magmatic rocks of transform settings show a sigmoidal chondrite-normalized REE distribution pattern with a negative slope of LREE, depletion in MREE, and an enriched or flat HREE pattern. Magmas with mixed geochemical characteristics presumably originated in a transform margin setting in local extension zones under influence of mantle diapirs, which caused metasomatism and melting of the lithosphere at different levels, and mixing of melts from different sources in variable proportions.
Resumo:
This paper presents results of investigations of unusual carbonate formations found in bottom sediments of the South China Sea shelf. These sediments were sampled from a deep fracture found by geophysical methods. According to gas-geochemical data there are high concentrations of methane, hydrogen and carbon dioxide in bottom waters of this area. The carbonate formations were defined as calcium siderite or siderodot by roentgenostructural, microprobe, atomic absorption, and thermal analyses, asawellas infrared spectroscopy. Formation of this mineral results from carbon dioxide and methane flows through bottom sediments.
Resumo:
This paper reports results of geological studies carried out during two marine expeditions of R/VAkademik M.A. Lavrent'ev (Cruises 37 and 41) in 2005 and 2006 at the underwater Vityaz Ridge. Dredging has yielded various rocks from the basement and sedimentary cover of the ridge within three polygons. On the basis of radioisotope age determinations, petrochemical, and paleontological data all the rocks have been subdivided into the following complexes: volcanic rock of Paleocene, Eocene, Late Oligocene, Middle Miocene, and Pliocene-Pleistocene; volcanogenic-sedimentary rocks of Late Cretaceous - Early Paleocene, Paleogene (undifferentiated), Oligocene - Early Miocene, and Pliocene-Pleistocene. Determinations of age and chemical composition of the rocks have enabled to specify formation conditions of the complexes and to trace geological evolution of the Vityaz Ridge. Presence of young Pliocene-Pleistocene volcanites allows to conclude about the modern tectono-magmatic activity of the central part of the Pacific slope of the Kuril Islands.
Resumo:
New geological and geophysical data on the Amirante Arc, which locates to the south of the Seychelles Islands, are presented. These data were obtained by Pacific Oceanological Institute during the 33-rd cruise of R/V Professor Bogorov in 1990. The Amirante Arc represents a seamount chain, which has submeridional strike and total length about 400 km. To the west of the Amirante Arc there are a deep sea trench and a back-arc basin, i.e. this area is characterized by structural elements associated with the subduction zone of Western Pacific type. According to our data the Amirante Arc is composed by tholeiites of ocean plateau type. This facts are evidences that the Amirante Arc differs from typical Pacific island arcs. This gives an opportunity to distinguish a special type of oceanic structures, i.e. non-volcanic (amagmatic) ridges. The Amirante Ridge has been probably formed as a result of oceanic crust heaping due to horizontal displacements of its blocks in the process of spreding ridge formation in the Indian Ocean during Cretaceous-Paleogene.
Resumo:
Mineral and chemical alterations of basalts were studied in the upper part of the ocean crust using data of deep-sea drilling from D/S Glomar Challenger in the main structures of the Pacific floor. Extraction of majority of chemical elements (including heavy metals) from basalts results mainly from their interaction with heated sea water. As a result mineralized hydrothermal solutions are formed. On entering the ocean they influence greatly on ocean sedimentation and ore formation.
Resumo:
The present investigation was targeted at diatom composition studies in the surface sediments (0-1 cm) sampled in the Sea of Okhotsk and the northwest Pacific in the depth range from 130 to 6110 m. The taxonomic analysis, as well as the quantitative (the diatom cell abundance per sediment dry weight unit) content and ecological group definition, was applied. Ten diatom taxa are the main body (80-100%) of the diatom assemblages: Bacterosira bathyomphala, Chaetoceros spp. (spores), Actinocyclus curvatulus, Thalassiosira latimarginata (group), T. antarctica (spores), Neodenticula seminae, Rhizosolenia hebetata f. hiemalis, Thalassiothrix longissima, Coscinodiscus marginatus, Coscinodiscus oculus iridis. The relative content of these species reflects the sedimentation conditions for different parts of the sea: the shelf, the continental slope, the open sea, and the ocean. The highest diatom content (45.6.3-60.0 mln per g of dry weight) was found for the surface sediments in the central part of the Sea of Okhotsk and the continental slope of western Kamchatka.
Resumo:
Eocene diatom and silicoflagellate complexes from deposits of the Kronotsky Bay are presented. Pro tempore they are the most ancient finds of fossil phytoplankton with silica skeletons in the Northwest Pacific. More than 130 diatom species belonging to 59 genera and 24 silicoflagellate species belonging to 5 genera have been determined. Three Middle Eocene complexes (of the Lisitzinia kanayai, Lisitzinia inconspicua var. trilobata, and Praecymatosira monomembranaceae zones) and one presumably Middle-Late Eocene complex (of the zone with Rylandsia conniventa) of diatoms have been identified. For the first time a large silicoflagellate complex attributable to the Dictyocha hexacantha zone is presented. It is assumed that the complexes formed mainly in bathyal conditions at relatively high (close to sub-tropical) temperatures of surface waters.
Resumo:
Results of geological research carried out by V.I. Il'ichev Pacific Oceanological Institute (Far East Division of the Russian Academy of Sciences) and P.P. Shirshov Institute of Oceanology (Russian Academy of Sciences) on the submarine Vityaz Ridge during Cruise 37 of R/V Akademik Lavrentyev in 2005 are discussed. Various rocks composing the basement and the sedimentary cover of the ridge were dredged in three areas. Based on isotope geochronology, petrogeochemical, petrographic, and paleontological data and comparison with similar rocks available from the adjacent land and the Sea of Okhotsk, they are subdivided into several age complexes. Late Cretaceous, Eocene, Late Oligocene, Miocene, and Pliocene-Pleistocene complexes are defined among igneous rocks, while volcanogenic-sedimentary rocks are united into Late Cretaceous - Early Paleocene (Late Campanian - Danian), undivided Paleogene (Paleocene-Eocene?), Oligocene - Early Miocene, and Pliocene-Pleistocene complexes. Obtained data on age and formation settings of the defined complexes allowed to reconstruct geological evolution of the central Pacific slope of the Kurile Island arc.