673 resultados para Paleocene


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed analysis of over 200 samples of uppermost Cretaceous and Paleocene sediments from Atlantic Ocean DSDP Sites 384, 86, 95, 152, 144, 20C, 21, 356, 357, and 329 provides new information on the temperature stratification of Paleocene planktonic foraminifera, the temperature and carbon isotopic changes across the Cretaceous/Tertiary boundary, and the fluctuating temperature and carbon isotopic records through the Paleocene ~64.5-54 m.y.). There was a significant temperature rise across the Cretaceous/Tertiary boundary both at the surface and in deep waters of the Atlantic Ocean. This temperature rise occurred before the basal Tertiary 'Globigerina' eugubina Zone, so that in the oldest Paleocene sample yet analyzed from the deep sea (Site 356) temperatures are already three degrees higher at the bottom and at the surface than in the Cretaceous. The temperature rise across the boundaryis more pronounced on the bottom and in samples from higher latitudes. Accompanying the temperature rise across the boundary there is a significant shift in the carbon isotope profile. In the basal Paleocene the foraminifera of the surface zone demonstrate very negative carbon isotope values (unlike in the Cretaceous of today's ocean), while deeper dwelling species have more positive values which then decrease to the bottom. The unusual carbon isotope gradients persist through the first three million years of the Paleocene until towards the top of planktonic foraminiferal Zone P.1 (G. trinidadensis Zone) the foraminifera record a profile more positive at the surface and decreasing towards the bottom (as in today's ocean). During the Paleocene there are two noteworthy rises in surface water temperature; the first around 62-61 m.y. (G. trinidadensis Zone), and the second near the base of the Globorotalia angulata Zone, 60-59 m.y. At this time surface temperatures at low to mid latitudes reached values near 25°C, while at mid-latitude Site 384 temperature highs near 22°C were registered. At a sample spacing of around one per million years, we have only produced some of the detail of these temperature fluctuations. The later Paleocene is generally cooler and there do not seem to be any large variations either through time or latitude. Middle-latitude sites average temperatures near 15°C at the surface, while high lower latitude site temperatures range near 18°C. The most salient feature of the bottom temperature record (based on multispecific samples) through the Paleocene is its lack of fluctuations. There is an overall temperature range of 5°C at these intermediate depth sites (paleodepth estimates between 1500 and 3000 m). Higher values near 13°C accompany the surface temperature peaks around 62 and 60 m.y., while low values near 8°C occur in Zone P.2 (61-60 m.y.). We detected no change in bottom temperature across the paleocene/Eocene boundary in the few samples studied so far. While there are several fluctuations in the carbon isotope values through the early Paleocene, the general trend is one of increasingly positive values at the surface and at depth. This trend culminates in the late Paleocene (upper Zone P.4, about 56-57 m.y.) with a major excursion in the carbon isotope values. At low latitudes the range between the surface and the deepest planktonic foraminifera is a delta13C of 4 per mil as compared with a range of 2 per mil today. The carbon values drop off slightly, but remain strongly positive through the remainder of the Paleocene at most sites. Accompanying the carbon isotope excursion at Site 384 is a productivity increase and a proposed rise in the CCD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the mid-Atlantic Coastal Plain of the United States, Paleocene sands and silts are replaced during the Paleocene-Eocene Thermal Maximum (PETM) by the kaolinite-rich Marlboro Clay. The clay preserves abundant magnetite produced by magnetotactic bacteria and novel, presumptively eukaryotic, iron-biomineralizing microorganisms. Using ferromagnetic resonance spectroscopy and electron microscopy, we map the magnetofossil distribution in the context of stratigraphy and carbon isotope data and identify three magnetic facies in the clay: one characterized by a mix of detrital particles and magnetofossils, a second with a higher magnetofossil-to-detrital ratio, and a third with only transient magnetofossils. The distribution of these facies suggests that suboxic conditions promoting magnetofossil production and preservation occurred throughout inner middle neritic sediments of the Salisbury Embayment but extended only transiently to outer neritic sediments and the flanks of the embayment. Such a distribution is consistent with the development of a system resembling a modern tropical river-dominated shelf.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable isotope analysis was performed on the structural carbonate of fish bone apatite from early and early middle Eocene samples (~55 to ~45 Ma) recently recovered from the Lomonosov Ridge by Integrated Ocean Drilling Program Expedition 302 (the Arctic Coring Expedition). The d18O values of the Eocene samples ranged from -6.84 per mil to -2.96 per mil Vienna Peedee belemnite, with a mean value of -4.89 per mil, compared to 2.77 per mil for a Miocene sample in the overlying section. An average salinity of 21 to 25 per mil was calculated for the Eocene Arctic, compared to 35 per mil for the Miocene, with lower salinities during the Paleocene Eocene thermal maximum, the Azolla event at ~48.7 Ma, and a third previously unidentified event at ~47.6 Ma. At the Azolla event, where the organic carbon content of the sediment reaches a maximum, a positive d13C excursion was observed, indicating unusually high productivity in the surface waters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyzed a suite of sediment samples recovered in the central Arctic Ocean for major, trace, and rare earth elements in order to assess changes in terrigenous source material throughout the Cenozoic. The terrigenous component consists of two end-members. Input from a shale-like composition dominates bulk sediments, especially those deposited during the Paleocene and since the Miocene, and may represent sediment supply from the eastern Laptev Sea. Therefore, even though the environment and transport mechanisms may have varied from ice free to ice dominated, sequences of the early Paleogene and later Neogene appear to have been influenced by a single major terrigenous source. This suggests similar transport capabilities and trajectories for both ocean and drift currents through significant parts of the Cenozoic. Influence from a more mafic source appears to be more important through the early Eocene to the middle Miocene and most likely represents material from the western Laptev Sea or Kara Sea. Thus, Eocene major changes in surface water productivity appear broadly synchronous with those in terrigenous provenance. A combination of regional sea level variations, local shelf processes, and transport mechanisms are among the more probable causes for the observed source changes. Although the assignment of sources using chemistry presently is constrained by a lack of data from certain regions (e.g., eastern Siberian Sea) our results generally agree with inferences based on mineralogy or radiogenic isotopes and shed further light on long-term reconstructions of the central Arctic Ocean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A prominent middle Eocene warming event is identified in Southern Ocean deep-sea cores, indicating that long-term cooling through the middle and late Eocene was not monotonic. At sites on Maud Rise and the Kerguelen Plateau, a distinct negative shift in d18O values (~1.0 per mil) is observed ca. 41.5 Ma. This excursion is interpreted as primarily a temperature signal, with a transient warming of 4°C over 600 k.y. affecting both surface and middle-bathyal deep waters in the Indian-Atlantic region of the Southern Ocean. This isotopic event is designated as the middle Eocene climatic optimum, and is interpreted to represent a significant climatic reversal in the midst of middle to late Eocene deep-sea cooling. The lack of a significant negative carbon isotope excursion, as observed during the Paleocene-Eocene thermal maximum, and the gradual rate of high-latitude warming suggest that this event was not triggered by methane hydrate dissociation. Rather, a transient rise in pCO2 levels is suspected, possibly as a result of metamorphic decarbonation in the Himalayan orogen or increased ridge/arc volcanism during the late middle Eocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Collisional and post-collisional volcanic rocks in the Ulubey (Ordu) area at the western edge of the Eastern Pontide Tertiary Volcanic Province (EPTVP) in NE Turkey are divided into four suites; Middle Eocene (49.4-44.6 Ma) aged Andesite-Trachyandesite (AT), Trachyandesite-Trachydacite-Rhyolite (TTR), Trachydacite-Dacite (TD) suites, and Middle Miocene (15.1 Ma) aged Trachybasalt (TB) suite. Local stratigraphy in the Ulubey area starts with shallow marine environment sediments of the Paleocene-Eocene time and then continues extensively with sub-aerial andesitic to rhyolitic and rare basaltic volcanism during Eocene and Miocene time, respectively. Petrographically, the volcanic rocks are composed primarily of andesites/trachyandesites, with minor trachydacites/rhyolites, basalts/trachybasalts and pyroclastics, and show porphyric, hyalo-microlitic porphyric and rarely glomeroporphyric, intersertal, intergranular, fluidal and sieve textures. The Ulubey (Ordu) volcanic rocks indicate magma evolution from tholeiitic-alkaline to calc-alkaline with medium-K contents. Primitive mantle normalized trace element and chondrite normalized rare earth element (REE) patterns show that the volcanic rocks have moderate light rare earth element (LREE)/heavy rare earth element (HREE) ratios relative to E-Type MORB and depletion in Nb, Ta and Ti. High Th/Yb ratios indicate parental magma(s) derived from an enriched source formed by mixing of slab and asthenospheric melts previously modified by fluids and sediments from a subduction zone. All of the volcanic rocks share similar incompatible element ratios (e.g., La/Sm, Zr/Nb, La/Nb) and chondrite-normalized REE patterns, indicating that the basic to acidic rocks originated from the same source. The volcanic rocks were produced by the slab dehydration-induced melting of an existing metasomatized mantle source, and the fluids from the slab dehydration introduced significant large ion lithophile element (LILE) and LREE to the source, masking its inherent HFSE-enriched characteristics. The initial 87Sr/86Sr (0.7044-0.7050) and eNd (-0.3 to +3.4) ratios of the volcanics suggest that they originated from an enriched lithospheric mantle source with low Sm/Nd ratios. Integration of the geochemical, petrological and isotopical with regional and local geological data suggest that the Tertiary volcanic rocks from the Ulubey (Ordu) area were derived from an enriched mantle, which had been previously metasomatized by fluids derived from subducted slab during Eocene to Miocene in collisional and post-collisional extension-related geodynamic setting following Late Mesozoic continental collision between the Eurasian plate and the Tauride-Anatolide platform.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cenozoic planktonic foraminiferal biostratigraphy at DSDP-IPOD Leg 80 sites documents the existence of regionwide stratigraphic gaps in the Paleocene and middle Miocene. Episodes of carbonate dissolution also occurred during the Paleocene at several sites, particularly at Site 549, where destruction of foraminiferal tests may obscure evidence of an unconformity. The middle Miocene hiatus is apparent at each site where Neogene sediments were continuously cored. Upper Miocene sediments at Site 550 (the only abyssal site) are characterized by moderate to extensive dissolution of planktonic foraminifers, but they contain abundant specimens of Bolboforma that mark this stratigraphic interval (von Daniels and Spiegler, 1974, doi:10.1007/BF02986990; Roegl, 1976, doi:10.2973/dsdp.proc.35.133.1976; Murray, 1979, doi:10.2973/dsdp.proc.48.116.1979; Müller et al., 1985, doi:10.2973/dsdp.proc.80.117.1985). Although foraminiferal evidence is not conclusive, nannofossils indicate a widespread Oligocene unconformity (Müller, 1985). Several oceanographic factors, not just simple sea-level change, probably interacted to produce these regional unconformities. There are also dramatic differences in the Cenozoic sedimentary record among Leg 80 sites, indicating that each has had a distinct geologic history. The thickness of the Cenozoic section varies from 100 m at Site 551 to 471 m at Site 548. The thickness of individual chronostratigraphic units also varies, as do the number and stratigraphic position of unconformities other than those mentioned. Differences in the stratigraphic record from site to site across the continental slope result from (1) location in separate half-graben structures, (2) varying location across the developing margin, and (3) difference in position relative to the seaward edge of the enclosing half-graben. Except for turbidites, deposition at Site 550 (abyssal) was largely independent of developments on the continental slope; but it was affected by oceanographic events widespread in the North Atlantic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first complete cyclic sedimentary successions for the early Paleogene from drilling multiple holes have been retrieved during two ODP expeditions: Leg 198 (Shatsky Rise, NW Pacific Ocean) and Leg 208 (Walvis Ridge, SE Atlantic Ocean). These new records allow us to construct a comprehensive astronomically calibrated stratigraphic framework with an unprecedented accuracy for both the Atlantic and the Pacific Oceans covering the entire Paleocene epoch based on the identification of the stable long-eccentricity cycle (405-kyr). High resolution X-ray fluorescence (XRF) core scanner and non-destructive core logging data from Sites 1209 through1211 (Leg 198) and Sites 1262, 1267 (Leg 208) are the basis for such a robust chronostratigraphy. Former investigated marine (ODP Sites 1001 and 1051) and land-based (e.g., Zumaia) sections have been integrated as well. The high-fidelity chronology is the prerequisite for deciphering mechanisms in relation to prominent transient climatic events as well as completely new insights into Greenhouse climate variability in the early Paleogene. We demonstrate that the Paleocene epoch covers 24 long eccentricity cycles. We also show that no definite absolute age datums for the K/Pg boundary or the Paleocene - Eocene Thermal Maximum (PETM) can be provided by now, because of still existing uncertainties in orbital solutions and radiometric dating. However, we provide two options for tuning of the Paleocene which are only offset by 405-kyr. Our orbitally calibrated integrated Leg 208 magnetostratigraphy is used to revise the Geomagnetic Polarity Time Scale (GPTS) for Chron C29 to C25. We established a high-resolution calcareous nannofossil biostratigraphy for the South Atlantic which allows a much more detailed relative scaling of stages with biozones. The re-evaluation of the South Atlantic spreading rate model features higher frequent oscillations in spreading rates for magnetochron C28r, C27n, and C26n.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Petrographic descriptions and stable oxygen and carbon isotope compositions of microsamples of Campanian-age sediment gravity-flow deposits from Northeast Providence Channel, Bahamas, indicate deep-marine cementation of shallow-marine skeletal grains that were transported to the channel during the Late Cretaceous. Shallow-marine components are represented by mollusks, especially rudists, and shallow-water benthic foraminifers as well as sparse echinoderm and algal grains. The sole evidence of diagenesis in shallow-marine environments consists of micrite envelopes around skeletal grains. Shallow-marine skeletal grains have mean stable isotope values of -3.1 per mil d18O and +2.6 per mil d13C. The d18O values are consistent with precipitation in equilibrium with warm (20°-30°C), shallow-marine water. Deep-marine components are represented by equant calcite spar cements and rip-up clasts of slope sediments. Spar cements, exhibiting hexagonal morphology with scalenohedral terminations, most commonly occur as thin isopachous linings in the abundant porosity. Deep-marine cements have mean stable isotope values of - 1.1 per mil d18O and +2.7 per mil d13C. Deep-marine cements are 18O-enriched relative to shallow-marine skeletal grains, consistent with precipitation in equilibrium with colder (10°-20°C), deep-marine waters. The cement .source during lithification appears to have been dissolution of aragonite and high-magnesium calcite skeletal grains, which made up part of the transported sediment. Interbedded periplatform ooze remains uncemented, or poorly cemented, probably because of lower permeability. Equant spar cements that occur in gravity-flow deposits recovered from Hole 634A have stable isotope compositions similar to spars in Lower and mid-Cretaceous shallow-water limestones exposed on the Bahama Escarpment, to Campanian-Paleocene deep-marine hardgrounds recovered during DSDP Leg 15 in the Caribbean, and to spars in Aptian-Albian talus deposits at the base of the Campeche Escarpment recovered during DSDP Leg 77.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sites 759 through 764 were drilled during Ocean Drilling Program Leg 122 on the Exmouth and Wombat plateaus off northwest Australia, eastern Indian Ocean. Radiolarian recovery was generally poor due to unsuitable lithofacies. A few Quaternary radiolarian faunas were recovered from most of the sites. Rare and poorly preserved Oligocene and Eocene radiolarian faunas were recovered from Holes 760A, 761B, 761C, and 762B. Poorly preserved Cretaceous radiolarians occur in samples from Holes 761B, 762C, 763B, and 763C. Chert intervals from Cores 122-761B-28X, 122-761C-5R, and 122-761C-6R contain moderately well-preserved Cretaceous radiolarian faunas (upper Albian, mid- to upper Cenomanian, and mid-Albian, respectively). Rare fragments of Upper Triassic radiolarians were recovered from sections in Holes 759B, 760B, and 764A. The only well-preserved pre-Quaternary radiolarians are in lower and upper Paleocene faunas (Bekoma campechensis Zone) recovered from Site 761, Sections 122-761B-16X-1 to 122-761C-19X-CC. The composition of these faunas differs somewhat from that of isolated coeval Paleocene faunas from Deep Sea Drilling Project sites in the Atlantic, Gulf of Mexico, tropical Pacific, eastern Indian Ocean, and near Spain and North Africa, as well as from several on-land sites in North America, Cuba, and the USSR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The precise cause and timing of the Cretaceous-Paleocene (K-P) mass extinction 65 Ma ago remains a matter of debate. Many advocate that the extinction was caused by a meteorite impact at Chicxulub, Mexico, and a number of potential kill-mechanisms have been proposed for this. Although we now have good constraints on the size of this impact and chemistry of the target rocks, estimates of its environmental consequences are hindered by a lack of knowledge about the obliquity of this impact. An oblique impact is likely to have been far more catastrophic than a sub-vertical one, because greater volumes of volatiles would have been released into the atmosphere. The principal purpose of this study was to characterize shocked quartz within distal K-P ejecta, to investigate whether the quartz distribution carried a signature of the direction and angle of impact. Our analyses show that the total number, maximum and average size of shocked quartz grains all decrease gradually with paleodistance from Chicxulub. We do not find particularly high abundances in Pacific sites relative to Atlantic and European sites, as has been previously reported, and the size-distribution around Chicxulub is relatively symmetric. Ejecta samples at any one site display features that are indicative of a wide range of shock pressures, but the mean degree of shock increases with paleodistance. These shock- and size-distributions are both consistent with the K-P layer having been formed by a single impact at Chicxulub. One site in the South Atlantic contains quartz indicating an anomalously high average shock degree, that may be indicative of an oblique impact with an uprange direction to the southeast +/- 45°. The apparent continuous coverage of proximal ejecta in this quadrant of the crater, however, suggests a relatively high impact angle of >45°. We conclude that some of the more extreme predictions of the environmental consequences of a low-angle impact at Chicxulub are probably not applicable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Concordant plateau and isochron ages are obtained from 40Ar-39Ar incremental heating experiments on volcanic rocks recovered by drilling at three Leg 121 sites along the Ninetyeast Ridge and two dredge locations on the southern scarp of the Broken Ridge, eastern Indian Ocean. The new data confirm a northerly increase in the age of volcanism along the Ninetyeast Ridge, from 38 to 82 Ma; this lineament links current hotspot volcanism near the Kerguelen islands with the Rajmahal flood basalt eruptions at M0 time (117 ± 1 Ma). The Broken Ridge was formed over the same hotspot at 88-89 Ma, but later experienced rift-related volcanism in Paleocene time (63 Ma). The geometry and distribution of ages along these prominent volcanic ridges and the Mascarene-Chagos-Laccadive-Maldive ridge system in the western Indian Ocean are most compatible with plate motions over fixed hotspots near Kerguelen and Reunion islands, respectively.