885 resultados para Ocean bottom
Resumo:
The stability of gypsum in marine sediments has been investigated through the calculation of its saturation index at the sediment in situ temperature and pressure, using the entire ODP/IODP porewater composition database (14416 samples recovered from sediments collected during 95 ODP and IODP Legs). Saturation is reached in sediment porewaters of 26 boreholes drilled at 23 different sites, during 12 ODP/IODP Legs. As ocean bottom seawater is largely undersaturated with respect to gypsum, the porewater Ca content or its SO4 concentration, or both, must increase in order to reach equilibrium. At several sites equilibrium is reached either through the presence of evaporitic gypsum layers found in the sedimentary sequence, and/or through a salinity increase due to the presence of evaporitic brines with high concentrations of Ca and SO4. Saturation can also be reached in porewaters of seawater-like salinity (~ 35 per mil), provided sulfate reduction is limited. In this case, saturation is due to the alteration of volcanogenic material which releases large amounts of Ca to the porewaters, where the Ca concentration can reach 55 times its seawater value as for example at ODP Leg 134 site 833. At a few sites, saturation is reached in hydrothermal environments, or as a consequence of the alteration of the basaltic basement. In addition to the well known influence of brines on the formation of gypsum, these results indicate that the alteration of sediments rich in volcanogenic material is a major process leading to gypsum saturation in marine sediment porewaters. Therefore, the presence of gypsum in ancient and recent marine sediments should not be systematically interpreted as due to hypersaline waters, especially if volcanogenic material is present.
Resumo:
Selenium content of phosphate material from the ocean bottom ranges from 0.2 to 4.7 mg/kg. Phosphorites of various ages from the Atlantic and Pacific Oceans contain 1.0-2.4 mg/kg of selenium, phosphatized coproliths 0.7-1.2 mg/kg, fish bones 0.2-1,4 mg/kg, and bones of marine mammals 0.5-4.7 mg/kg. Recent diatom muds on the shelf of Namibia are considerably enriched in selenium (12.2-13.8 mg/kg) than phosphorites that form within them. Accumulation of selenium in phosphate material on the ocean bottom results from diagenetic reduction, causing it to be precipitated from liquid phase and to concentrate in organic components and sulfides.
Resumo:
We have analyzed inorganic and organic carbons and determined the isotopic composition of both sedimentary organic carbon and inorganic carbon in carbonates contained in sediments recovered from Holes 434, 434A, 434B, 435, and 435A in the landward slope of Japan and from Hole 436 in the oceanic slope of the Japan Trench. Both inorganic and organic carbons were assayed at the P. P. Shirshov Institute of Oceanology, in the same sample, using the Knopp technique and measuring evolved CO2 gravimetrically. Each sample was analyzed twice in parallel. Measurements were of a ±0.05 per cent accuracy and a probability level of 0.95. Carbon isotopic analysis was carried out on a MI-1305 mass spectrometer at the I. M. Gubkin Institute of Petrochemical and Gas Industry and the results presented as dC13 values related to the PDB standard. The procedure for preparing samples for organic carbon isotopic analysis involved (1) drying damp sediments at 60°C; (2) treating samples, while heating, with 10 N HCl to remove carbonate carbon; and (3) evaporating surplus HCl at 60°C. The organic substance was turned to CO2 by oxidizing it in an oxygen atmosphere. To prepare samples for inorganic carbon isotopic analysis we decomposed the carbonates with orthophosphoric acid and refined the gas evolved. The dC13 measurements, including a full cycle of sample preparation, were of a ±0.5 per cent accuracy and a probability level of 0.95.
Resumo:
We investigate the influence of carbonate system parameters (carbonate ion concentration, [CO3**2-]; carbonate ion saturation, Delta [CO3**2-]) on the trace element and stable isotope ratios in the endobenthic foraminifera Oridorsalis umbonatus. Data from modern core top samples from the Namibian continental slope suggest that the shell composition of this species is influenced by the chemistry of the pore-water. For these organic-rich sediments, the impact of ocean bottom water properties on both pore-water and shell chemistry is surprisingly small. Sr/Ca correlates positively with [CO3**2-] and to a lesser extent with Delta [CO3**2-], which is opposed to previous results. A [CO3**2-] decrease of 10 µmol/kg leads to an increase of 0.05 mmol/mol in Sr/Ca. We observe a correlation between shell d18O (corrected for temperature and d18O seawater) and [CO3**2-], however, the variability of the corrected d18O is close to the analytical limit. No clear dependences were observed for d13C and Mg/Ca.
Resumo:
A study of distribution of live individuals of benthic foraminifera in sediments of the Sea of Okhotsk and of the Northwestern Basin of the Pacific Ocean shows that they can be present in sediments up to depth of 30 cm and probably can live there for long periods, sometimes forming high concentrations. Living individuals in the subsurface layer often account for more than 50% of total biomass, which varies from 1 to 21 g/m**2 in different morphological structures. The largest biomass values are attained in underwater rises embedded in relatively warm, oxygen-saturated Pacific waters. Minimum total biomass concentrations occur in deep-water depressions where stagnation phenomena are observed. Foraminifera biomass everywhere decreases gradually with increasing depth from the surface of sediments regardless of relief, depth, and nature of sediments.
Resumo:
Processes governing the formation of rare earth element (REE) composition are under consideration for ferromanganese deposits (nodules, separate parts of nodules, and micronodules of different size fractions) within the Clarion-Clipperton ore province in the Pacific Ocean. It is shown that ferromanganese oxyhydroxide deposits with different chemical compositions can be produced in sediments under similar sedimentation conditions. In areas with high bioproductivity size of micronodules has positive correlation with Mn content and Mn/Fe and P/Fe ratios and negative correlation with Fe, P, REE, and Ce anomaly. Behavior of REE in micronodules from sediments within bioproductive zones is related to increase of influence of diagenetic processes in sediments as a response to the growth of size of micronodules. Distinctions in chemical composition of micronodules and nodules are related to their interaction with associated sediments. Micronodules grow in sediments using hydrogenous ferromanganese oxyhydroxides. As they grow, micronodules are enriched in labile fraction of sediments reworked during diagenesis. Sources of material of ferromanganese nodules are governed by their formation at the water bottom interface. Their upper part is formed by direct settling of iron oxyhydroxides from bottom water, whereas the lower part is accumulated due to diagenetic processes in sediments. Differences of REE compositions in ferromanganese deposits are caused by the reduction of manganese during diagenesis and its separation from iron. Iron oxyhydroxides form a sorption complex due to sorption of phosphate-ion from bottom and pore waters. Sorption of phosphate-ion results in additional sorption of REE.
Resumo:
Distribution and composition of lipids and contents of alkanes and polycyclic aromatic hydrocarbons(PAHs) in bottom sediments of the Scotia and Weddell seas are discussed. Comparatively low concentrations of organic carbon (average 0.35%) and lipids (average 0.024%) result from rapid decomposition of organic matter in upper layers of the water column. Composition of alkanes indicates that lipids are of autochthonous origin, and stable concentrations of PAHs (average 25.8 ppb, sigma 15.3 ppb) indicate that they represent the background level for bottom sediments. Higher concentrations of PAHs in sediments near the King George Island (252.1 ppb) and different distributions of individual polyarenes are produced there by the heating systems of the Polish Antarctic Station.
Resumo:
Lipid contents both in particulate matter and bottom sediments decreases with passage from the shelf toward the open ocean. Lipid concentration in particulate matter collected by a separator (Ls) decreases by a factor of 7 (from 7.05 to 0.95 % of dry matter), while in particulate matter collected on filters (Lf) it decreases by a factor of 13 (from 78 to 6 µg/l) in the vicinity of the Limpopo River and by a factor of 6 (from 74 to 13 µg/l) in the vicinity of the Zambezi River. Concentration of Lf also decreased with depth. In the upper sediment layers lipid concentration was 0.0028-0.039% of dry matter; all mud samples were richer in lipids, than sand samples. During sedimentogenesis there is an increase in proportion of lipids relative to other classes of organic matter, proportion of low-polarity compounds increases among the lipids, and proportion of hydrocarbons rises among these compounds. Sediments inherit composition of particulate matter to the greatest degree in the vicinity of river mouths.
Resumo:
This paper presents data on chemical composition of bottom sediments from the Chukchi Sea and the adjacent Arctic Ocean. Multivariate statistical techniques were used for analysis of the data set and revealed that grain size fractionation of the original terrigenous component during sedimentation was the major factor of clustering of the samples in study. Secondary factors include accumulation of biogenic siliceous and carbonate material and chemogenic or biochemical accumulation of iron, manganese, and some trace elements. The latter factor was significant in areas of tectonic activity within the graben-rift system of the Chukchi Sea.