365 resultados para Niobium carbide
Resumo:
Samples of basalt collected on Leg 65 near 22°N on the East Pacific Rise all display the depleted light rare-earth pattern of "normal" oceanic crust. Consequently the La/Ta ratio is close to 18, as opposed to the value of 9 associated with the flat or enriched patterns found along parts of the Mid-Atlantic Ridge and the Emperor Seamount chain. The Leg 65 samples are chemically similar to those from the CYAMEX area at 21 °N and to the Leg 54 samples from 9°N, suggesting homogeneity of the upper mantle under the northern part of the East Pacific Rise over a minimum distance of about 1500 km. The geochemistry of the rocks and their field relationships with respect to depth and distance from the axis of the Rise show no pattern of distribution linked to the degree of fractional crystallization and thus cast doubt on any possible model involving large, long-lived magma chambers at the axis of the Rise.
Resumo:
Twenty-two trace elements in 355 sediment samples from Site 997 on the Blake Ridge were examined by inductively coupled plasma-optical emission spectrometry and inductively coupled plasma-mass spectrometry, for respective fractions of acid-soluble and insoluble compositions. Downhole profiles of these elements exhibit complicated fluctuations throughout late Miocene to Pleistocene, principally due to the variations in the acid-soluble fraction. Noncarbonate composition is given from the acid-insoluble residues, which permits us to recognize secular feature of selected element variance for four intervals. These intervals (I: 0-183 mbsf; II: 183- 440 mbsf; III: 440-618 mbsf; and IV: 618-750 mbsf) are interpreted to have originated from changes in the suite of sediments of particular sources and chemical composition, sedimentation rate, dilution of biogenic carbonate abundance, and possibly the current system that controlled deposition and reworking of the terrigenous materials.
Resumo:
Trace element and isotopic signatures of magmatic rock samples from ODP Hole 642E at the Vøring Plateau provide insight into the interaction processes of mantle melt with crust during the initial magma extrusion phases at the onset of the continental breakup. The intermediate (basaltic-andesitic) to felsic (dacitic and rhyolitic) Lower Series magmas at ODP Hole 642E appear to be produced by large amounts of melting of upper crustal material. This study not only makes use of the traditional geochemical tools to investigate crust-mantle interaction, but also explores the value of Cs geochemistry as an additional tool. The element Cs forms the largest lithophile cation, and shows the largest contrast in concentration between (depleted) mantle and continental crust. As such it is a very sensitive indicator of involvement of crustal material. The Cs data reinforce the conclusion drawn from isotopic signatures that the felsic magmas are largely anatectic crustal melts. The down-hole geochemical variation within ODP Hole 642E defines a decreasing continental crustal influence from the Lower Series into the Upper Series. This is essential information to distinguish intrinsic geochemical properties of the mantle melts from signatures imposed by crustal contamination. A comparison with data from the SE Greenland margin highlights the compositional asymmetry of the crust-mantle interactions at both sides of the paleo-Iapetus suture. While Lower Series and Middle Series rocks from the SE Greenland margin have isotopic signatures reflecting interactions with lower and middle crust, such signatures have not been observed at the mid-Norwegian margin. The geochemical data either point to a dissimilar Caledonian crustal composition and/or to different geodynamic pre-breakup rifting history at the two NE Atlantic margin segments.
Resumo:
A technique of zooplankton net sampling at night in the Kandalaksha and Dvinskii Bays and during the full tide in the Onezhskii Bay of the White Sea allowed us to obtain "clean" samples without considerable admixtures of terrigenous particulates. Absence of elements-indicators of the terrigenous particulates (Al, Ti, and Zr) in the EDX spectra allows to conclude that ash composition of tested samples is defined by constitutional elements comprising organic matter and integument (chitin, shells) of plankton organisms. A quantitative assessment of accumulation of ca. 40 chemical elements by zooplankton based on a complex of modern physical methods of analysis is presented. Values of the coefficient of the biological accumulation of the elements (Kb) calculated for organic matter and the enrichment factors (EF) relative to Clarke concentrations in shale are in general determined by mobility of the chemical elements in aqueous solution, which is confirmed by calculated chemical speciation of the elements in the inorganic subsystem of surface waters of Onezhskii Bay.
Resumo:
Igneous rocks recovered from Ocean Drilling Program (ODP) Leg 134 Sites 827, 829, and 830 at the toe of the forearc slope of New Hebrides Island Arc were investigated, using petrography, mineral chemistry, major and trace element, and Sr, Nd, and Pb isotopic analyses. Basaltic and andesitic clasts, together with detrital crystals of plagioclase, pyroxenes, and amphiboles embedded in sed-lithic conglomerate or volcanic siltstone and sandstone of Pleistocene age, were recovered from Sites 827 and 830. Petrological features of these lava clasts suggest a provenance from the Western Belt of New Hebrides Island Arc; igneous constituents were incorporated into breccias and sandstones, which were in turn reworked into a second generation breccia. Drilling at Site 829 recovered a variety of igneous rocks including basalts and probably comagmatic dolerites and gabbros, plus rare ultramafic rocks. Geochemical features, including Pb isotopic ratios, of the mafic rocks are intermediate between midocean ridge basalts and island arc tholeiites, and these rocks are interpreted to be backarc basin basalts. No correlates of these mafic rocks are known from Espiritu Santo and Malakula islands, nor do they occur in the Pleistocene volcanic breccias at Sites 827 and 830. However, basalts with very similar trace element and isotopic compositions have been recovered from the northern flank of North d'Entrecasteaux Ridge at Site 828. It is proposed that igneous rocks drilled at Site 829 represent material from the North d'Entrecasteaux Ridge accreted onto the over-riding Pacific Plate during collision. An original depleted mantle harzburgitic composition is inferred for a serpentinite clast recovered at 407 meters below seafloor (mbsf) in Hole 829A. Its provenance is a matter of speculation. It could have been brought up along a deep thrust fault affecting the Pacific Plate at the colliding margin, or analogous to the Site 829 basaltic lavas, it may represent material accreted from the North d'Entrecasteaux Ridge.
Resumo:
Although the climate development over the Holocene in the Northern Hemisphere is well known, palaeolimnological climate reconstructions reveal spatiotemporal variability in northern Eurasia. Here we present a multi-proxy study from north-eastern Siberia combining sediment geochemistry, and diatom and pollen data from lake-sediment cores covering the last 38,000 cal. years. Our results show major changes in pyrite content and fragilarioid diatom species distributions, indicating prolonged seasonal lake-ice cover between ~13,500 and ~8,900 cal. years BP and possibly during the 8,200 cal. years BP cold event. A pollen-based climate reconstruction generated a mean July temperature of 17.8°C during the Holocene Thermal Maximum (HTM) between ~8,900 and ~4,500 cal. years BP. Naviculoid diatoms appear in the late Holocene indicating a shortening of the seasonal ice cover that continues today. Our results reveal a strong correlation between the applied terrestrial and aquatic indicators and natural seasonal climate dynamics in the Holocene. Planktonic diatoms show a strong response to changes in the lake ecosystem due to recent climate warming in the Anthropocene. We assess other palaeolimnological studies to infer the spatiotemporal pattern of the HTM and affirm that the timing of its onset, a difference of up to 3,000 years from north to south, can be well explained by climatic teleconnections. The westerlies brought cold air to this part of Siberia until the Laurentide ice-sheet vanished 7,000 years ago. The apparent delayed ending of the HTM in the central Siberian record can be ascribed to the exceedance of ecological thresholds trailing behind increases in winter temperatures and decreases in contrast in insolation between seasons during the mid to late Holocene as well as lacking differentiation between summer and winter trends in paleolimnological reconstructions.