677 resultados para Hermes, Trismegistus.
Resumo:
Multibeam data were measured as part of the project HERMES during R/V Polarstern cruise ARK-XXII/1 (2007-05-29 to 2007-07-25) along transits and survey profiles and partly during stationary work. Data were achieved mainly in the coastal areas of northern Norway, at the Hakon Mosby Mud Volcano at the continental margin approx. 200 nm off the norwegian coast and the AWI-Hausgarten area approx. 150 nm west of Svalbard. A number of surveys were carried out in the coastal areas of northern Norway (Sula Reef, Roest Reef, Traena area, Floholmen area, Sotbakken area) and around the area of the Hakon Mosby Mud Volcano. The multibeam sonar system Atlas Hydrosweep DS-2 (Atlas Hydrographic, http://www.atlashydro.com) was operated using 59 beams and 90° aperture angle. The refraction correction was achieved using CTD profiles measured during this cruise or, during transits, utilizing the system's own cross fan calibration. The quality of data might be reduced during bad weather periods or adverse sea ice conditions (only in the AWI-Hausgarten area). This dataset contains raw data that are not processed and thus may contain errors and blunders in depth and position.
Resumo:
Over the last decade pockmarks have proven to be important seabed features that provide information about fluid flow on continental margins. Their formation and dynamics are still poorly constrained due to the lack of proper three dimensional imaging of their internal structure. Numerous fluid escape features provide evidence for an active fluid-flow system on the Norwegian margin, specifically in the Nyegga region. In June-July 2006 a high-resolution seismic experiment using Ocean Bottom Seismometers (OBS) was carried out to investigate the detailed 3D structure of a pockmark named G11 in the region. An array of 14 OBS was deployed across the pockmark with 1 m location accuracy. Shots fired from surface towed mini GI guns were also recorded on a near surface hydrophone streamer. Several reflectors of high amplitude and reverse polarity are observed on the profiles indicating the presence of gas. Gas hydrates were recovered with gravity cores from less than a meter below the seafloor during the cruise. Indications of gas at shallow depths in the hydrate stability field show that methane is able to escape through the water-saturated sediments in the chimney without being entirely converted into gas hydrate. An initial 2D raytraced forward model of some of the P wave data along a line running NE-SW across the G11 pockmark shows, a gradual increase in velocity between the seafloor and a gas charged zone lying at ~300 m depth below the seabed. The traveltime fit is improved if the pockmark is underlain by velocities higher than in the surrounding layer corresponding to a pipe which ascends from the gas zone, to where it terminates in the pockmark as seen in the reflection profiles. This could be due to the presence of hydrates or carbonates within the sediments.