321 resultados para Fresh water - Production


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Records of biogenic and terrigenous components have been obtained from the interval corresponding to the last 2.6 m.y. of ODP Sites 643 and 644 in order to reconstruct surface and deep water regimes in the Norwegian Sea. Surface water regimes record long lasting moderate glacial conditions during the interval 2.6 1.0 Ma. Small intrusions of Atlantic water episodically penetrated into the Norwegian Sea forming a narrow tongue along the eastern margin, which is documented at Site 644. The polar front was most probably situated between the Site 644 and 643 locations on the outer Voring Plateau during these time intervals. Deep water regimes reflect long-term persistent corrosive bottom waters, most probably due to a weakly undersaturated water column and a low rate of carbonate shell production in surface waters. Deep water production in the Norwegian-Greenland Sea may have operated in a different way, e.g. brine formation during winter sea ice growth. Bottom waters were oxygenated throughout the entire period, and deep water was exchanged persistently with the North Atlantic. Increased glacial/interglacial enviromental contrasts are documented, reflecting a strengthening of the Norwegian Current and intensified glaciations on the surrounding land masses during the interval 1.0 0.6 Ma. During this time a major shift in the mode of deep water production occurred. Tile onset of large amplitudes in glacial/interglacial environmental conditions with maximum contrasts in surface water regimes, different modes of deep water production, and intensified exchange with the North Atlantic marks the last 0.6 Ma. A broad development of the Norwegian Current is observed during peak interglacials, while during glacials seasonally variable sea ice cover and iceberg drift dominate surface water conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the modern marine environment the silicoflagellate genus Dictyocha is rare, or absent, south of the Antarctic polar front (APF); the genus Distephanus, in contrast, is dominant. In sediments recovered from ODP Site 1165, 1600 km south of the front, however, three intervals where Dictyocha is abundant are interpreted to represent Pliocene warm events. Comparison of our data with Ciesielski and Weaver's [1974] modern core top silicoflagellate relationship with sea surface temperature (SST) indicates that at Site 1165 mean annual SST was approximately 5°C at 3.7 Ma (event I), and approximately 4°C at 4.3-4.4 Ma (event II) and 4.55-4.8 Ma (event III). Event I represents a 5.5°C warming, and events II and III represents a 4.5°C warming relative to modern mean annual SST. Dictyocha is absent from other Site 1165 Pliocene intervals, which suggests that cooler SST (<2°C) prevailed. The warm events detected at Site 1165 may represent times when North Atlantic Deep Water production and ocean heat transport into the Southern Ocean exerted maximum influence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The scope of this research was to find out, how important is the presence of brackish water for the formation of the characteristical littoral subsoil fauna in the interstitial spaces of beaches. There is little precipitation in the Red Sea area and therefore little influence of freshwater on the beach. Moreover, the sandy beach of Sarso Island (Farasan Archipelago) is bordered landwards and underneath by solid limestone, preventing subsoil fresh water, if there is any, from penetrating into the beach region. The salinity of the interstitial water from Sarso beach lies a little above the salinity of the adjacent sea. The microfauna of Sarso beach is composed to a rather big proportion of such species that are known to be characteristical littoral subsoil water species, partially of world wide distribution. The ecological analysis of this fauna, i.e. the freeliving Nematodes, reveals the presence of two distinct associations: 1. the association of the low level subsoil region, close to the sea, with clear interstitial water, subject to regular exchange with the water of the adjcent sea. 2. the association of the high level subsoil region, 4-10 meter distant from the sea, with brownish water. Contrary to earlier results there is no distinction in salinity between the two associations, so it is not longer justified to apply the term brackish water fauna on the animals living in the association of the high level subsoil region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The stable isotopic composition of two planktonic foraminifer species (Globigerinoides sacculifer and Neogloboquadrina dutertrei) and two benthic foraminifer species (Cibicidoides wuellerstorfi and Uvigerina peregrina) was measured at sub-orbital resolution through the marine isotope stages (MISs) 10, 11, and 12 (345-460 ka) at Site 1056 on the Blake-Bahama Outer Ridge. Planktonic foraminifers were counted for the interval 405-450 ka at 2-4-kyr resolution. Site 1056 (32°29'N, 76°20'W) is located on the continental slope (water depth: 2167 m) beneath the Gulf Stream. The average rate of sediment accumulation through the interval is 11.4 cm/kyr, but sediment accumulation is much more rapid during glacial intervals (15-17 cm/kyr). The decline in percent carbonate during glacial intervals, and its rise during interglacials, indicates that the increased sediment supply is of terrigenous origin. Low carbonate values and low benthic delta13C, which are both associated with a weak Western Boundary Undercurrent and low North Atlantic Deep Water production, persist for 6 kyr after the benthic delta18O record indicates that ice volume has begun to decrease. Recovery of carbonate and benthic delta13C values is abrupt and rapid. Millennial-scale variation (~3-4 kyr) is apparent in the glacial intervals of the planktonic delta18O records and is more pronounced in a Delta delta18O record, which represents the temperature range in the photic zone. Semi-precessional (10-12-kyr) cycles are apparent in the planktonic deltadelta13C record. The millennial-scale cycles are largely caused by an increase in G. sacculifer delta18O and represent surface warming. They are interpreted as representing periodic increases in westward intensification of the gyre. The semi-precessional cycles are driven by changes in the N. dutertrei delta13C and represent fluctuations in the Gulf Stream itself and therefore likely have a tropical origin. Planktonic foraminifer census counts did not show an expected response to one of the largest glacial/interglacial transitions of the late Pleistocene. The most obvious change was an increase in faunal diversity during MIS 12.2, the interval of maximum delta18O values. This suggests that cool slope water and warm subtropical gyre water penetrated a more sluggish Gulf Stream with greater frequency at this time. The millennial-scale maxima in the Delta delta18O record are accompanied by decreases in diversity, which is consistent with the interpretation of surface warming during these events.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Living (Rose Bengal stained) benthic foraminifera were collected with a multicorer from six stations between 2°N and 12°S off West Africa. The foraminiferal communities in the investigated area reflect the direct influence of different productivity regimes, and are characterized by spatially and seasonally varying upwelling activity. At five stations, foraminiferal abundance coincides well with the gradient of surface productivity. However, at one station off the Congo River, the influence of strong fresh water discharge is documented. Although this station lies directly in the center of an upwelling area, foraminiferal standing stocks are surprisingly low. It is suggested that the Congo discharge may induce a fractionation of the organic matter into small and light particles of low nutritional content, by contrast to the relatively fast-sinking aggregates found in the centers of high productivity areas. Quality and quantity of the organic matter seem to influence the distribution of microhabitats as well. The flux of organic carbon to the sea-floor controls the sequence of degradation of organic matter in sediment and the position of different redox fronts. The vertical foraminiferal stratification within sediment closely parallels the distribution of oxygen and nitrate in porewater, and reflects different nutritive strategies and adaptation to different types of organic matter. The epifauna and shallow infauna colonize oxygenated sediments where labile organic matter is available. The intermediate infauna (M. barleeanum) is linked to the zone of nitrate reduction in sediments where epifaunal and shallow infaunal species are not competitive anymore, and must feed on bacterial biomass or on metabolizable nutritious particles produced by bacterial degradation of more refractory organic matter. The deep infauna shows its maximum distribution in anoxic sediments, where no easily metabolizable organic matter is available.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Last Interglacial (LIG, 129-116 thousand of years BP, ka) represents a test bed for climate model feedbacks in warmer-than-present high latitude regions. However, mainly because aligning different palaeoclimatic archives and from different parts of the world is not trivial, a spatio-temporal picture of LIG temperature changes is difficult to obtain. Here, we have selected 47 polar ice core and sub-polar marine sediment records and developed a strategy to align them onto the recent AICC2012 ice core chronology. We provide the first compilation of high-latitude temperature changes across the LIG associated with a coherent temporal framework built between ice core and marine sediment records. Our new data synthesis highlights non-synchronous maximum temperature changes between the two hemispheres with the Southern Ocean and Antarctica records showing an early warming compared to North Atlantic records. We also observe warmer than present-day conditions that occur for a longer time period in southern high latitudes than in northern high latitudes. Finally, the amplitude of temperature changes at high northern latitudes is larger compared to high southern latitude temperature changes recorded at the onset and the demise of the LIG. We have also compiled four data-based time slices with temperature anomalies (compared to present-day conditions) at 115 ka, 120 ka, 125 ka and 130 ka and quantitatively estimated temperature uncertainties that include relative dating errors. This provides an improved benchmark for performing more robust model-data comparison. The surface temperature simulated by two General Circulation Models (CCSM3 and HadCM3) for 130 ka and 125 ka is compared to the corresponding time slice data synthesis. This comparison shows that the models predict warmer than present conditions earlier than documented in the North Atlantic, while neither model is able to produce the reconstructed early Southern Ocean and Antarctic warming. Our results highlight the importance of producing a sequence of time slices rather than one single time slice averaging the LIG climate conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lipid compositions of sediments recovered during Ocean Drilling Program Leg 184 in the South China Sea have been identified and quantified. The identified lipids can be ascribed to terrigenous and marine sources. Terrigenous lipids are mainly C27, C29, C31 n-alkanes, C26, C28, C30 n-fatty acids, and n-alcohols, which were derived from leaf waxes of higher land plants and transported to the sea by airborne dust or fresh water. Marine lipids, mainly C37 and C38 alkenones, C30 diol, and C30 and C32 keto-ols, were from microalgae, notably haptophytes and eustigmatophytes. Elevated concentrations and accumulation rates of both terrigenous and marine lipids in the interval 202-245 meters composite depth (mcd) and 0-166 mcd were postulated to be related to the development of the East Asian monsoon at 6-8 Ma and enhanced variations of the developed East Asian monsoon after 3.2 Ma, respectively. The pronounced late Oligocene input of terrigenous lipids reflects the paleoenvironment of a newly opened, narrow basin, with restricted ocean waters and the proximity of continental runoff.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Meltponds on Arctic sea ice have previously been reported to be devoid of marine metazoans due to fresh-water conditions. The predominantly dark frequently also green and brownish meltponds observed in the Central Arctic in summer 2007 hinted to brackish conditions and considerable amounts of algae, possibly making the habitat suitable for marine metazoans. Environmental conditions in meltponds as well as sympagic meiofauna in new ice covering pond surfaces and in rotten ice on the bottom of ponds were studied, applying modified techniques from sea-ice and under-ice research. Due to the very porous structure of the rotten ice, the meltponds were usually brackish to saline, providing living conditions very similar to sub-ice water. The new ice cover on the surface had similar characteristics as the bottom layer of level ice. The ponds were thus accessible to and inhabitable by metazoans. The new ice cover and the rotten ice were inhabited by various sympagic meiofauna taxa, predominantly ciliates, rotifers, acoels, nematodes and foraminiferans. Also, sympagic amphipods were found on the bottom of meltponds. We suggest that, in consequence of global warming, brackish and saline meltponds are becoming more frequent in the Arctic, providing a new habitat to marine metazoans.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We compare a compilation of 220 sediment core d13C data from the glacial Atlantic Ocean with three-dimensional ocean circulation simulations including a marine carbon cycle model. The carbon cycle model employs circulation fields which were derived from previous climate simulations. All sediment data have been thoroughly quality controlled, focusing on epibenthic foraminiferal species (such as Cibicidoides wuellerstorfi or Planulina ariminensis) to improve the comparability of model and sediment core carbon isotopes. The model captures the general d13C pattern indicated by present-day water column data and Late Holocene sediment cores but underestimates intermediate and deep water values in the South Atlantic. The best agreement with glacial reconstructions is obtained for a model scenario with an altered freshwater balance in the Southern Ocean that mimics enhanced northward sea ice export and melting away from the zone of sea ice production. This results in a shoaled and weakened North Atlantic Deep Water flow and intensified Antarctic Bottom Water export, hence confirming previous reconstructions from paleoproxy records. Moreover, the modeled abyssal ocean is very cold and very saline, which is in line with other proxy data evidence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Geologie cores on two profiles oriented normaly to the continental shelf and slope, have been investigated to reconstruct the Quaternary sedimentary history of the southeast continental border of South Orkney (NW Weddell Sea). The sediments were described macroscopically and their fabric investigated by use of X-radiographs. Laboratory work comprised detailed grain-size analysis, determination of the watercontent, carbonate, organic carbon and sand fraction.composition. Stable oxygen and carbon isotopes have been measured On planktonic foraminifera. Palaeomagnetism, analysis of 230Th-content and detailed comparison of the lithlogic Parameters with the oxygen isotope stages (Martinson curve) were used for stratigraphic classification of the sediments. The sediment cores from the continental slope comprise a maximum age of 300,000 years B. P.. Bottom currents, ice rafting and biogenic input are the main sources of sediment. Based on lithologic parameters a distinction between glacial and interglacial facies is possible. Silty clays without microfossils and few bioturbation characterise the sediments of the glacial facies. Only small amounts of icerafted debris can be recognized. This type of sediment was accumulated during times of lower sea-level and drastically reduced rate of bottom water production. Based on grain-size distribution, bottom current velocities of 0.01 cmls were calculated. Thick sea-ice coverage reduced biogenic production in the surface water, and as consequence benthic communities were depleted. Because of the reduced benthic life, sediments are only slithly bioturbated. At the beginning of the interglacial Stage, the sea-level rised rapidly, and calving rate of icebergs, combined with input of ice-rafted material, increased considerably. Sediments of this transition facies are silty cliiys with a high proportion of coarse ice-rafted debris, but without microfossils. With the onset of bottom water production in connection with shelf ice water, sediments of interglacial facies were formed. They consist of silty clays to clayey silts with considerable content of sand and gravel. Sediments are strongly bioturbated. Based On the sediment caracteristics, current velocities of the bottom water were calculated to be of 0.96 cmls for interglacials. At the southern slope of a NW/SE-striking ridge, bottom water current is channelized, resulting in a drastic increase of current velocities. Current velocities up to 7.5 cm/s lead to formation of residual sediments. While the continental slope has predominantly fine sediments, the South Orkney shelf are mainly sandy silts and silty sands with a high proportion of gravel. These sediments were formed dominantly by ice-rafting during Brunhes- and Matuyama-Epoch. Currents removed the fine fraction of the sediments. Based on microfossil contents it was not possible to differentiate sediments from glacial to interglacial. In the upper Parts of the cores graded sequences truncated by erosion were observed. These sequences were formed during Brunhes-Epoch by strong currents with velocities decreasing periodically from about 7.5 cm/s to about 1 cm/s. Sediments with a high proportion of siliceous microfossils but barren of foraminifera compose the lower part of the shelf cores. These sediments have formed during the warmer Matuyama-Epoch.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Models indicate that a complete shutdown of deep and intermediate water production is a possible consequence of extreme climate conditions in the northern North Atlantic, and the high ratio of 231Pa to 230Th on Bermuda Rise is evidence that this might have happened ?17 ka during Heinrich event 1 (H1). However, new radiocarbon data from bivalves that lived at ?4.6 km on the Bermuda Rise during H1 lead to a different conclusion. The bivalve data do indeed indicate ventilation of the deep western North Atlantic was suppressed during H1 but not as much as it was during the last glacial maximum. We propose that high diatom flux to the Bermuda Rise during H1 is at least in part responsible for increased 231Pa/230Th at that time. Although we cannot say for sure why opal production was so high in a gyre center location at that time, increased leakage of silica rich waters from the Southern Ocean to the North Atlantic is one possibility.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The southwestern part of the subpolar North Atlantic east of the Grand Banks of Newfoundland and Flemish Cap is a crucial area for the Atlantic Meridional Overturning Circulation. Here the exchange between subpolar and subtropical gyre takes place, southward flowing cold and fresh water is replaced by northward flowing warm and salty water within the North Atlantic Current (NAC). As part of a long-term experiment, the circulation east of Flemish Cap has been studied by seven repeat hydrographic sections along inline image (2003-2011), a 2 year time series of current velocities at the continental slope (2009-2011), 19 years of sea surface height, and 47 years of output from an eddy resolving ocean circulation model. The structure of the flow field in the measurements and the model shows a deep reaching NAC with adjacent recirculation and two distinct cores of southward flow in the Deep Western Boundary Current (DWBC): one core above the continental slope with maximum velocities at mid-depth and the second farther east with bottom-intensified velocities. The western core of the DWBC is rather stable, while the offshore core shows high temporal variability that in the model is correlated with the NAC strength. About 30 Sv of deep water flow southward below a density of sigma-theta = 27.68 kg/m**3 in the DWBC. The NAC transports about 110 Sv northward, approximately 15 Sv originating from the DWBC, and 75 Sv recirculating locally east of the NAC, leaving 20 Sv to be supplied by the NAC from the south.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In an extended deep-sea study the response of the benthic community to seasonally varying sedimentation rates of organic matter were investigated at a fixed abyssal site in the NE Atlantic (BIOTRANS station or JGOFS station L2 at 47°N-20°W, water depth >4500 m) on four legs of METEOR expedition 21 between March and August 1992. The vertical flux at 3500 m depth and temporal variations in the chloroplastic pigment concentration, a measure of phytodetritus deposition, and of total adenylates and total phospholipids, measures of benthic biomass, and of activity of hydrolytic enzymes were observed. The flux patterns in moored sediment traps of total chlorophyll, POC and total flux showed an early sedimentation peak in March/April 1992, followed by low fluxes in May and intermediate ones from June to August. Thus 1992 differed from other years, in which one large flux peak after the spring phytoplankton bloom was observed. Unusually high concentrations of chloroplastic pigments were consistently observed in March 1992, reflecting the early sedimentation input. At the same time biomass of small benthic organisms (bacteria to meiobenthos) and activity of hydrolytic enzymes were higher compared to values from March 1985 and from the following months in 1992. In May and August 1992 pigment concentrations and biomass and activity parameters in the sediment were lower than during previously observed depositions of phytodetrital matter in summer. The data imply that the deep ocean benthic community reacts to small sedimentation events with transient increases in metabolic activity and only small biomass production. The coupling between pelagic and benthic processes is so close that interannual variability in surface water production is "mirrored" by deep-sea benthic processes.