596 resultados para Feo-zno-(cao sio2) System
Resumo:
Alteration products of basalts from the four holes drilled during Leg 81 were studied and found to be characterized by the widespread occurrence of trioctahedral clay minerals (Mg smectite to chlorite). In some cases zeolites (analcite, chabazite) are associated with the saponite. A more oxidizing stage is marked by a saponite-celadonite association, presenting the geochemical characteristics of hydrothermal processes. Later stages of alteration are represented by palagonitization and subaerial weathering at two sites. These different alteration processes of basalts from Leg 81 record the paleoenvironment during the first opening stages of the Northeast Atlantic Ocean in the Paleocene-Eocene periods.
Resumo:
The Leg 80 basalts drilled on the Porcupine Abyssal Plain 10 km southwest of Goban Spur (Hole 550B) and on the western edge of Goban Spur (Hole 551), respectively, are typical light-rare-earth-element- (LREE-) depleted oceanic tholeiites. The basalts from the two holes are almost identical; most of their primary geochemical and mineralogical characteristics have been preserved, but they have undergone some low-temperature alteration by seawater, such as enrichment in K, Rb, and Cs and development of secondary potassic minerals of the "brownstone facies." K/Ar dating fail to give realistic emplacement ages; the apparent ages obtained become younger with alteration (causing an increase in K2O). Hole 551 basalts are clearly different from the continental tholeiites emplaced on the margins of oceanizing domains during the prerift and synrift stages.
Resumo:
The upper part of the basaltic substratum of the Atlantic abyssal plain, approaching subduction beneath the Barbados Ridge and thus presumably beneath the Lesser Antilles island arc, is made of typical LREE-depleted oceanic tholeiites. Mineralogical (microprobe) and geochemical (X-ray fluorescence, neutron activation analyses) data are given for 12 samples from the bottom of Hole 543A, which is 3.5 km seaward of the deformation front of the Barbados Ridge complex. These basalts are overlain by a Quaternary to Maestrichtian-Campanian sedimentary sequence. Most of the basalts are relatively fresh (in spite of the alteration of olivine and development of some celadonite, clays, and chlorite in their groundmass), and their mineralogical and geochemical compositions are similar to those of LREE-depleted recent basalts from the Mid-Atlantic Ridge. The most altered samples occur at the top of the basaltic sequence, and show trends of enrichment in alkali metals typical of altered oceanic tholeiites.
Resumo:
The Galicia margin lies northwest of the Iberian Peninsula and is a passive ocean margin with thin sedimentary cover. Altered peridotite was recovered from ODP Site 637, on the north-trending ridge at the western edge of the margin, near the oceanic/continental crust boundary. The altered ultramafics were originally clinopyroxene-rich upper mantle harzburgites and are now extensively serpentinized (>85%) and cut by very late-stage carbonate veins. Despite pervasive late, low-temperature alteration, evidence of early, high-temperature alteration remains. Alteration is apparent as (1) amphibole rims on clinopyroxene (>800°C), (2) hornblende + tremolite (450° to 800°C), (3) breakdown of hornblende to form tremolite + chlorite (<450°C), (4) zoned Cr-spinels, (5) hydration of orthopyroxene and olivine to serpentine, (6) serpentine veins, (7) replacement of pyroxene and olivine by calcite, and (8) calcite veins and vugs. Both the relict igneous and the high-temperature alteration minerals (amphiboles) show evidence of brittle deformation. Subsequent low-temperature alteration veins and minerals are deformed only in faulted and brecciated zones. This textural evidence suggests that the low-temperature alteration occurred after emplacement of the ultramafics at the surface. Serpentine fills tension fractures in orthopyroxene, and both serpentine and calcite fill tension cracks in olivine. The high-temperature alterations in these samples are similar to those found in oceanic fracture zone and ophiolite ultramafics. This widespread occurrence of high-temperature alteration suggests that hot fluids were pervasive in these ultramafic blocks. Localization of high-temperature alteration close to large carbonate veins suggests channelization of the late, low-temperature fluids. Earlier hydrations (e.g., high-temperature alterations and serpentinization) were pervasive.
Resumo:
Cherts recovered during DSDP Leg 72 from Rio Grande Rise sediments (Site 516) consist of both cristobalite and quartz, and contain ghosts of foraminifers and (more rare) radiolarians. Porcelanite made of disordered cristobalite is found in most old enclosing sediments. Local dissolution of siliceous microfossils during diagenesis is the most likely source of the silica required for the chert formation. As sediment age increases, the proportion of biogenic silica decreases and authigenic silica increases.
Resumo:
The monograph has been written on the base of data obtained from samples and materials collected during the 19-th cruise of RV ''Akademik Vernadsky'' to the Northern and Equatorial Indian Ocean. Geological features of the region (stratigraphy, tectonic structure, lithology, distribution of ore-forming components in bottom sediments, petrography of igneous rocks, etc.) are under consideration. Regularities of trace element concentration in Fe-Mn nodules, nodule distribution in bottom sediments, and engineering-geological properties of sediments within the nodule fields have been studied. Much attention is paid to ocean crust rocks. The wide range of ore mineralization (magnetite, chromite, chalcopyrite, pyrite, pentlandite, and other minerals) has been ascertained.
Resumo:
Three phases of volcanism have been recognized in the lower Paleogene sequence of the southwest Rockall Plateau which are related to the onset of seafloor spreading in the NE Atlantic. The earliest, Phase 1, is marked by a sequence of tholeiitic basalts and hyaloclastites which form the dipping reflector sequence in Edoras Basin. Phase 2 is characterized by tuffs and lapilli tuffs of air-fall origin, ranging in composition from basic to intermediate. They were generated by highly explosive igneous activity due to magma-water interaction, and terminate at the level of a major transgression. Subsequently, volcanism reverted to tholeiitic basalt type, producing the thin tuffs and minor basalt flows of Phase 3. Alteration of the volcanic glass and diagenesis of the tuffs and lapilli tuffs has been considerable in many cases, with a large number of diagenetic mineral phases observed, including smectite, celadonite, analcime, phillipsite, clinoptilolite, mordenite, and calcite. Although calcite is the latest observed diagenetic cement, it nevertheless occurred relatively early, in one case totally preserving basaltic glass from alteration.
Resumo:
Dating of a hornblende concentrate by the 40Ar/39Ar method gives an age of 23.4±5.5 m.y. for a dacite boulder from conglomerate in Deep Sea Drilling Project Hole 439. The conglomerate clasts range up to 1 meter in diameter and are nearly monolithologic, suggesting that a nearby former volcano erupted the dacite. The dacite is only 90 km landward from the Japan Trench, whereas modern trench-related volcanoes lie at least 120 km from their trenches. The dacite locality is on strike with and is probably an extension of a magmatic arc on the island of Hokkaido that crosses the Kuril arc at an angle of 65° and which was active 16 to 36 m.y. ago. The part of the former arc landward from the Kuril arc argues against an origin from a leaking subduction zone or from subduction of an active spreading ridge. The part seaward both from the Kuril and Japan arcs weakens an explanation based on migration of a trench-trenchtrench triple junction. The magmatic rocks probably formed along a middle-Tertiary plate boundary that had stepped seaward from a more-landward Cretaceous position. Later, the boundary stepped farther seaward at the Kuril arc and landward again at the Japan arc. If so, the present Japan subduction zone must have consumed most of the strata that had accumulated between it and the earlier trench.
Resumo:
Two trenches off Japan were explored during DSDP Leg 87. One is the Nankai Trough and the other is the Japan Trench; Site 582 is located on the floor of the former and Site 584 is situated on the deep-sea terrace of the latter. Cores from Site 582 and 584 consist mainly of hemipelagic sediments and diatomaceous silts and mudstone, respectively. In this report we analyze the chemistry of the interstitial water and sediments, as well as the sediment mineralogy. Sulfate reduction is accompanied by the production of secondary pyrite, which is rich in the sediment at both sites. Dissolved Ca concentration is relatively low and changes only slightly at both sites, probably because of the formation of carbonate with high alkalinity. Concentrations of dissolved Mg decrease with depth at Site 584. The dissolved Mg depletion probably results from the formation of Mg-rich carbonate and/or ion exchange and reaction between interstitial water and clay minerals. Higher Si/Al values are due to biogenic opal in the sediments and roughly correlate with higher values of interstitial water SiO2. Increases in dissolved Li concentrations may be related to its release from clay minerals, to advection that results from dewatering, and/or to fluid transport.
Resumo:
Acidic to intermediate volcanic rocks were obtained as boulders, pebbles, and clasts with intercalated matrix sediments near the Japan Trench. A 47.5-meter conglomerate bed unconformably overlies acoustic basement consisting of Upper Cretaceous siltstone and is overlain in turn by massive coarse-sandstone and siltstone beds with many fossil mollusks. The volcanic cobbles and boulders in the conglomerate show pronounced porphyritic texture. Their phenocrysts are plagioclase, hornblende, and biotite; the groundmass consists of plagioclase, K-feldspar, quartz, iron oxide, and altered interstitial glass. The Plagioclase content of these volcanic rocks is very high, whereas iron oxide minerals are rare. The chemical composition of these volcanic rocks was analyzed to determine the rock series. Matrix sediments were also analyzed chemically, and their chemical composition was found to be similar to that of volcanic rocks, except for a lower CaO content. SiO2 content of the volcanic rocks ranges from 60.23 to 73.90, corresponding to that of andesite to rhyolite. All the samples show extremely high Al2O3 content, which reflects the high amounts of modal plagioclase. These volcanic rocks belong to both the calc-alkalic and tholeiitic rock series, and the differentiation trend is controlled by fractional crystallization, mainly of plagioclase, K-feldspar, and hornblende. The assemblage of calc-alkalic and tholeiitic rock series is frequently observed in island arcs and active continental margins. These volcanic rocks are derived from the Oyashio ancient landmass, which is a slightly matured island arc.
Resumo:
Primary sulfide mineralization in basalts of the Costa Rica Rift occurs mainly in chrome-spinel-bearing olivine tholeiites. Primary sulfides form both globules, consisting of quenched single-phase solid solutions, and irregular polymineralic segregations of pyrrhotite, chalcopyrite, cubanite, and pentlandite. Two types of sulfide solid solutions - iron-nickel (Mss) and iron-copper (Iss) - were found among sulfide globules. These types appear to have formed because of sulfide-sulfide liquid immiscibility in the host magmas; as proved by the presence of globules with a distinct phase boundary between Mss and Iss. Such two-phase globules are associated with large olivine phenocrysts. Inhomogeneties among the globule composition likewise are caused by sulfide-sulfide immiscibility. Secondary sulfides form irregular segregations and veins consisting of pyrite, marcasite, and chalcopyrite.
Resumo:
Major element chemistry of basalt from the southern East Pacific Rise (EPR) is different from that of the EPR at the time of the formation of the Pacific Plate at 170 Ma.Glass recovered from Jurassic age (170 Ma) Pacific ocean crust (Bartolini and Larson, 2001, doi:10.1130/0091-7613(2001)029<0735:PMATPS>2.0.CO;2) at Ocean Drilling Program Hole 801C records higher Fe8 (10.77 wt%) and marginally lower Na8 (2.21 wt%) compared to the modern EPR, suggesting deeper melting and a temperature of initial melting that was 60°C hotter than today.Trace element ratios such as La/Sm and Zr/Y, on the other hand, show remarkable similarities to the modern southern EPR, indicating that Site 801 was not generated on a hotspot-influenced ridge and that mantle composition has changed little in the Pacific over the past 170 Ma. Our results are consistent with the observation that mid-ocean ridge basalts (MORBs) older than 80 Ma were derived by higher temperature melting than are modern MORBs (Humler et al., 1999, doi:10.1016/S0012-821X(99)00218-6), which may have been a consequence of the Cretaceous superplume event in the Pacific.Site 801 predates the formation of Pacific oceanic plateaus and 801C basalt chemistry indicates that higher temperatures of mantle melting beneath Pacific ridges preceded the initiation of the superplume.
Resumo:
Studies of interstitial waters obtained from DSDP Leg 64 drill sites in the Gulf of California have revealed information both on early diagenetic processes in the sediments resulting from the breakdown of organic matter and on hydrothermal interactions between sediments and hot doleritic sill intrusions into the sediments. In all the sites drilled sulfate reduction occurred as a result of rapid sediment accumulation rates and of relatively high organic carbon contents; in most sites methane production occurred after sulfate depletion. Associated with this methane production are high values of alkalinity and high concentrations of dissolved ammonia, which causes ion exchange processes with the solid phases leading to intermediate maxima in Mg++, K+, Rb+, and Sr++(?). Though this phenomenon is common in Leg 64 drill sites, these concentration reversals had been noticed previously only in Site 262 (Timor Trough) and Site 440 (Japan Trench). Penetrating, hot dolerite sills have led to substantial hydrothermal alteration in sediments at sites drilled in the Guaymas Basin. Site 477 is an active hydrothermal system in which the pore-water chemistry typically shows depletions in sulfate and magnesium and large increases in lithium, potassium, rubidium, calcium, strontium, and chloride. Strontium isotope data also indicate large contributions of volcanic matter and basalt to the pore-water strontium concentrations. At Sites 478 and 481 dolerite sill intrusions have cooled to ambient temperatures but interstitial water concentrations of Li+, Rb+, Sr++ , and Cl- show the gradual decay of a hydrothermal signal that must have been similar to the interstitial water chemistry at Site 477 at the time of sill intrusion. Studies of oxygen isotopes of the interstitial waters at Site 481 indicate positive values of d18O (SMOW) as a result of high-temperature alteration reactions occurring in the sills and the surrounding sediments. A minimum in dissolved chloride at about 100-125 meters sub-bottom at Sites 478, 481, and particularly Site 479 records a possible paleosalinity signal, associated with an event that substantially lowered salinities in the inner parts of the Gulf of California during Quaternary time.
Resumo:
Bulk X-ray mineralogy of 47 hemipelagic mud and clay samples from the Blake Outer Ridge has revealed that the sediments contain low magnesian calcite, calcian dolomite, ferroan dolomite, and magnesian siderite. Dolomite and siderite are authigenic and occur as rhombohedrons scattered through the sediments, whereas calcite is mostly biogenic. Pliocene dolomitic lenses are made up of interlocking polyhedral grains of ferroan dolomite. The contents of authigenic dolomite and siderite are 3 to 8% in carbonate sediments and 70 to 89% in dolomitic lenses. Dolomite occurs largely in the cores above 192 m sub-bottom depth, whereas siderite occurs in the cores below 87 m. The distribution and occurrence of dolomite and siderite have determined the diagenetic zonation of carbonates as Zone I (dolomitic zone, top-90 m), Zone II (transition zone, 90-180 m), and Zone III (sideritic zone, 180 m-bottom). Measurements of major and minor elements in the untreated total sediment samples and the insoluble residues after digestion in acid-reducing solution have revealed that the soluble fraction concentrates carbonates and ferromanganese associations (Ca, Mg, Sr, Fe, and Mn). Typical "hydrogenous elements" (Co, Cu, Ni, and V) are more concentrated in the insoluble residues rather than in the soluble fraction; the concentrations of these four elements are low and comparable to modern offshore mud, probably because the Site 533 sediments were deposited at a high rate of sedimentation. The contents of Fe2O3 and MnO are somewhat high for rapidly accumulated mud, particularly in the Pliocene sediments (8.09 and 0.26%, respectively, on a Carbonate-free basis). The high Fe and Mn contents are mainly due to the high contribution of the leacheable nonlithogenous fraction; leacheable Fe and Mn originate in the ferromanganese oxide accumulated on the seafloor. Only a small amount of ferric oxide was converted to iron sulfide in the surficial part of Zone I. Most ferromanganese oxide was reduced and precipitated as ferroan dolomite and magnesian siderite in Zones II and III under high alkalinity and high pH conditions in the organic-matter-rich sediments. Fe2+ and Mn2+ in the deeper sediments beneath Zone III possibly migrated upward and concentrated as siderite in Zone III, hence resulting in high contents of Fe and Mn in the Pliocene sediments. Analysis of carbonate zonation on the Blake Outer Ridge has revealed that the zonation is subparallel to the bedding plane rather than to the present seafloor. The sediments at Site 103 on the flank region of the Ridge are lacking Zone I and most of Zone II, probably the result of erosion of the most of the Pleistocene and Pliocene sediments by the enhanced bottom currents during the Pleistocene.