171 resultados para ELECTROMAGNETIC-WAVES
Resumo:
Late-summer thickness distributions of large ice floes in the Transpolar Drift between Svalbard and the North Pole in 1991, 1996, 1998, and 2001 are compared. They have been derived from drilling and electromagnetic (EM) sounding. Results show a strong interannual variability, with significantly reduced thickness in 1998 and 2001. The mean thickness decreased by 22.5% from 3.11 m in 1991 to 2.41 m in 2001, and the modal thickness by 22% from 2.50 m in 1991 to 1.95 m in 2001. Since modal thickness represents the thickness of level ice, the observed thinning reflects changes in thermodynamic conditions. Together with additional data from the Laptev Sea obtained in 1993, 1995, and 1996, results are in surprising agreement with recently published thickness anomalies retrieved from satellite radar altimetry for Arctic regions south of 81.5°N. This points to a strong sensitivity of radar altimetry data to level ice thickness.
Resumo:
Tropical scleractinian corals are particularly vulnerable to global warming as elevated sea surface temperatures (SST) disrupt the delicate balance between the coral host and their algal endosymbionts, leading to symbiont expulsion, mass bleaching and mortality. While satellite sensing of SST has proven a good predictor of coral bleaching at the regional scale, there are large deviations in bleaching severity and mortality on the local scale, which are only poorly understood. Here, we show that internal waves play a major role in explaining local coral bleaching and mortality patterns in the Andaman Sea. In spite of a severe region-wide SST anomaly in May 2010, frequent upslope intrusions of cold sub-pycnocline waters due to breaking large amplitude internal waves (LAIW) alleviated heating and mitigated coral bleaching and mortality in shallow LAIW-exposed waters. In LAIW-sheltered waters, by contrast, bleaching susceptible species suffered severe bleaching and total mortality. These findings suggest that LAIW, which are ubiquitous in tropical stratified waters, benefit coral reefs during thermal stress and provide local refugia for bleaching susceptible corals. The swash zones of LAIW may thus be important, so far overlooked, conservation areas for the maintainance of coral diversity in a warming climate. The consideration of LAIW can significantly improve coral bleaching predictions and can provide a valuable tool for coral reef conservation and management.