441 resultados para Depth, logging


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the "Atlantic Expedition" in1965 (IQSY) a comprehensive bathymetric survey and a few hydrographic stations were made by R.V. "Meteor" in the equatorial region of the Mid-Atlantic Ridge. The survey results are shown in a bythymetric chart covering the western parts of the Romanche- and Chain Fracture Zones. West of the original Romanche Trench another deep trench with a medium depth of 6000 m was discovered. The maximum sounding obtained was 7028 m. Both trenches apparently belong to the same fracture zone, but are distinctly separated from each other. The estern boundary of the trench against the Brasil Basin is formed by a sill rising to a depth of about 4400 m. The serial hydrographic observations give some indications of the flow of the cold Westatlantic deep water in the fracture zone area and its influence on the hydrographic conditions in the East-Atlantic Basin. The upper limit of the nearly homogenious Westatlantic bottom water with an Antarctic components lies about 4400 m. The water mass entering the system of trenches of the Romanche Fracture Zone over the western sill originates from the lower part of the discontinuity layer lying above the bottom water. Potential temperatures of 0.6°C were the lowest observed by "Meteor" in the western trench. There seems to be a remarkable tongue of relatively high salinity and a minimum of oxygen in the deep water of this trench. At present we can only speculate upon the origin of this highly saline deep water tongue underneath the eastward moving relatively thin layer of less saline Westatlantic deep water. In the range of the sill separating both trenches a lee wave is indicated by the distribution of salinity and oxygen, which implies a vertical transport of water masses. Caused by this transport it is assumed that relatively cold water may be lifted temporarily to a depth, where it can pass the northbounding ridge, thus getting directly into the Sierra Leone Basin. In the original Romanche Trench the cold Westatlantic deep water seems to fill the whole trough, but its extension remains limited to the trench itself. The water masses found east of the sill separating the trench from the East-Atlantic Basin originate from the lower part of the discontinuity layer. With potential temperatures of about 1.3°C they are much warmer than those observed in the Romanche Trench bottom water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On DSDP Leg 84, gas hydrates were found at three sites (565, 568, and 570) and were inferred, on the basis of inorganic and organic geochemical evidence, to be present at two sites (566 and 569); no evidence for gas hydrates was observed at Site 567. Recovered gas hydrates appeared as solid pieces of white, icelike material occupying fractures in mudstone or as coarse-grained sediment in which the pore space exhibited rapid outgassing. Also a 1.05-m-long core of massive gas hydrate was obtained at Site 570. Downhole logging indicated that this hydrate was actually 3 to 4 m thick. Measurements of the amount of methane released during the decomposition of these recovered samples clearly showed that gas hydrates had been found. The distribution of evolved hydrocarbon gases indicated that Structure I gas hydrates were present because of the apparent inclusion of methane and ethane and exclusion of propane and higher molecular weight gases. The water composing the gas hydrates was fresh, having chlorinities ranging from 0.5 to 3.2 per mil. At Sites 565, 568, and 570, where gas hydrates were observed, the chlorinity of pore water squeezed from the sediment decreased with sediment depth. The chlorinity profiles may indicate that gas hydrates can often occur finely dispersed in sediments but that these gas hydrates are not recovered because they do not survive the drilling and recovery process. Methane in the gas hydrates found on Leg 84 was mainly derived in situ by biogenic processes, whereas the accompanying small amounts of ethane likely resulted from low-temperature diagenetic processes. Finding gas hydrates on Leg 84 expands observations made earlier on Leg 66 and particularly Leg 67. The results of all of these legs show that gas hydrates are common in landward slope sediments of the Middle American Trench from Mexico to Costa Rica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benthic foraminiferal faunas from three bathyal sequences provide a proxy record of oceanographic changes through the mid-Pleistocene transition (MPT) on either side of the Subtropical Front (STF), east of New Zealand. Canonical correspondence analyses show that factors related to water depth, latitude and climate cycles were more significant than oceanographic factors in determining changes in faunal assemblage composition over the last 1 Ma. Even so, mid-Pleistocene faunal changes are recognizable and can be linked to inferred palaeoceanographic causes. North of the largely stationary STF the faunas were less variable than to the south, perhaps reflecting the less extreme glacial-interglacial fluctuations in the overlying Subtropical Surface Water. Prior to Marine Isotope Stage (MIS) 21 and after MIS 15, the northern faunas had fairly constant composition, but during most of the MPT faunal composition fluctuated in response to climate-related food-supply variations. Faunal changes through the MPT suggest increasing food supply and decreasing dissolved bottom oxygen. South of the STF, beneath Subantarctic Surface Water, mid-Pleistocene faunas exhibited strong glacial-interglacial fluctuations, inferred to be due to higher interglacial nutrient supply and lower oxygen levels. The most dramatic faunal change in the south occurred at the end of the MPT (MIS 17- 12). with an acme of Abditodentrix pseudothalmanni, possibly reflecting higher carbon flux and lower bottom oxygen. This study suggests that the mid-Pleistocene decline and extinction of a group of elongate, cylindrical deep-sea foraminifera may have been related to decreased bottom oxygen concentrations as aresult of slower deep-water currents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This data set contains soil carbon measurements (Organic carbon, inorganic carbon, and total carbon; all measured in dried soil samples) from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Stratified soil sampling was performed in April 2006 to a depth of 30 cm. Three samples per plot were taken using a split tube sampler with an inner diameter of 4.8 cm (Eijkelkamp Agrisearch Equipment, Giesbeek, the Netherlands). Sampling locations were less than 30 cm apart from sampling locations in 2002. Soil samples were segmented into 5 cm depth segments in the field (resulting in six depth layers) and made into composite samples per depth. Subsequently, samples were dried at 40°C. All soil samples were passed through a sieve with a mesh size of 2 mm. Because of much higher proportions of roots in the soil, samples in years after 2002 were further sieved to 1 mm according to common root removal methods. No additional mineral particles were removed by this procedure. Total carbon concentration was analyzed on ball-milled subsamples (time 4 min, frequency 30 s**-1) by an elemental analyzer at 1150°C (Elementaranalysator vario Max CN; Elementar Analysensysteme GmbH, Hanau, Germany). We measured inorganic carbon concentration by elemental analysis at 1150°C after removal of organic carbon for 16 h at 450°C in a muffle furnace. Organic carbon concentration was calculated as the difference between both measurements of total and inorganic carbon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integrated Ocean Drilling Program (IODP) Expedition 320 recovered high-quality paleomagnetic records with over 800 dated reversals and decimeter-scale cyclic sediments which provide an outstanding framework to inter-calibrate major fossil groups and refine magnetic polarity chrons for the early Miocene, the entire Oligocene and the late Eocene Epoch. In order to reconstruct the climate history of the Equatorial Pacific one of the major objectives of the Pacific Equatorial Age Transect (PEAT) is the compilation of a Cenozoic Megasplice which integrates all available bio-, chemo-, and magnetostratigraphic data including key records from Ocean Drilling Program (ODP) Leg 199. Here we present extended post-cruise refinements of the shipboard composite depth scales and composite records of IODP Expedition 320 Sites U1331, U1332, U1333, U1334 as well as ODP Leg 199 Sites 1218, 1219 and 1220. The revised composite records were used to perform a site-to-site correlation and integration of Leg 199 and Exp. 320 sites. Based on this decimeter scale correlation a high resolution integrated paleomagnetic and biostratigraphic framework for the Equatorial Pacific is established covering the time from 20 to 40 Ma. This unprecedented sedimentary compendium from the Equatorial Pacific will be the backbone for paleoceanographic reconstructions for the late Paleogene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although numerous studies have addressed the migration and dive behaviour of southern elephant seals (Mirounga leonina), questions remain about their habitat use in the marine environment. We report on the vertical use of the water column in the species and the potential lifetime implications for southern elephant seals from Marion Island. Long-term mark-resight data were used to complement vertical habitat use for 35 known individuals tagged with satellite-relay data loggers, resulting in cumulative depth use extrapolated for each individual over its estimated lifespan. Seals spent on average 77.59% of their lives diving at sea, 7.06% at the sea surface, and 15.35% hauled out on land. Some segregation was observed in maximum dive depths and depth use between male and female animals-males evidently being physiologically more capable of exploiting increased depths. Females and males spent 86.98 and 80.89% of their lives at sea, respectively. While at sea, all animals spent more time between 300 and 400 m depth, than any other depth category. Males and females spent comparable percentages of their lifetimes below 100 m depth (males: 65.54%; females: 68.92%), though males spent 8.98% of their lives at depths in excess of 700 m, compared to females' 1.84% at such depths. Adult males often performed benthic dives in excess of 2,000 m, including the deepest known recorded dive of any air-breathing vertebrate (>2,133 m). Our results provide a close approximation of vertical habitat use by southern elephant seals, extrapolated over their lifespans, and we discuss some physiological and developmental implications of their variable depth use.