753 resultados para Clay minerals adsorbents


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Leg 83 of the Deep Sea Drilling Project has deepened Hole 504B to over 1 km into basement, 1350 m below the seafloor (BSF). The hole previously extended through 274.5 m of sediment and 561.5 m of pillow basalts altered at low temperature (< 100°C), to 836 m BSF. Leg 83 drilling penetrated an additional 10 m of pillows, a 209-m transition zone, and 295 m into a sheeted dike complex. Leg 83 basalts (836-1350 m BSF) generally contain superimposed greenschist and zeolite-facies mineral parageneses. Alteration of pillows and dikes from 836 to 898 m BSF occurred under reducing conditions at low water/rock ratios, and at temperatures probably greater than 100°C. Evolution of fluid composition resulted in the formation of (1) clay minerals, followed by (2) zeolites, anhydrite, and calcite. Alteration of basalts in the transition zone and dike sections (898-1350 m BSF) occurred in three basic stages, defined by the opening of fractures and the formation of characteristic secondary minerals. (1) Chlorite, actinolite, pyrite, albite, sphene, and minor quartz formed in veins and host basalts from partially reacted seawater (Mg-bearing, locally metal-and Si-enriched) at temperatures of at least 200-250°C. (2) Quartz, epidote, and sulfides formed in veins at temperatures of up to 380°C, from more evolved (Mg-depleted, metal-, Si-, and 18O-enriched) fluids. (3) The last stage is characterized by zeolite formation: (a) analcite and stilbite formed locally, possibly at temperatures less than 200°C followed by (b) formation of laumontite, heulàndite, scolecite, calcite, and prehnite from solutions depleted in Mg and enriched in Ca and 18O, at temperatures of up to 250°C. The presence of small amounts of anhydrite locally may be due to ingress of relatively unaltered seawater into the system during Stage 3. Alteration was controlled by the permeability of the crust and is characterized by generally incomplete recrystallization and replacement reactions among secondary minerals. Secondary mineralogy in the host basalts is strongly controlled by primary mineralogy. The alteration of Leg 83 basalts can be interpreted in terms of an evolving hydrothermal system, with (a) changes in solution composition because of reaction of seawater fluids with basalts at high temperatures; (b) variations in permeability caused by several stages of sealing and reopening of cracks; and (c) a general cooling of the system, caused either by the cooling of a magma chamber beneath the spreading center and/or the movement of the crust away from the heat source. The relationship of the high-temperature alteration in the transition zone and dike sections to the low-temperature alteration in the overlying pillow section remains uncertain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

X-ray powder diffraction and optical and scanning-electron microscope analyses of sediment samples taken from four sites drilled in the Goban Spur area of the northeast Atlantic show variable diagenetic silicification of sediments at several stratigraphic horizons. The results are as follows: 1. The silicified sediments are middle Eocene at Site 548, Paleocene to lower Albian at Site 549, upper to lower Paleocene at Site 550, and lower Turanian at Site 551. 2. There are three types of these silicified sediments: nodular type in carbonate-rich host sediments, bedded type in clayey host sediments, and a type transitional between the other two. 3. Silica diagenesis is considered to progress as follows: dissolution of siliceous fossils; precipitation of opal CT in pore spaces and transformation of biogenic silica (opal A) to opal CT, development of opal CT cement; chalcedonic quartz precipitation in pore spaces and replacement of foraminiferal tests by chalcedonic quartz; and finally, transformation of opal CT to quartz, and cementation. But the strong influence of host-sediment types on diagenetic silica fades is recognized. Bedded-type silicified sediments in a clayey environment indicate a lower grade of silica diagenesis. Only very weak chalcedonic quartz formation is recognized, and there is no opal CT cementation, even in Lower Cretaceous bedded-type clayey silicified sediments. 4. The rf(101) spacing of opal CT shows two distinct trends of ordering or decrease with burial depth; one is a rapid change, in the case of nodular silicified sediments, and the other is a more gentle shift, found in bedded silicified sediments. 5. Diagenetic silica facies of the nodular type develop as irregular concentric zones around some nodule nuclei. Also, quartz-chert nodule formation occurs at rather shallower horizons, and is discordant with the trend of decreasing d(101) spacing in opal CT. 6. Silicified sediments at Site 551 are shallower than at the other sites. The diagenetic silica facies suggest the probable erosion of 300 m or more of sediment at this site. 7. The zeolites clinoptilolite and phillipsite were found in the sediment samples recovered on Leg 80. Clinoptilolite occurs from the shallower levels to the deepest horizons of diagenetically silicified zones, suggesting that clinoptilolite formation is related to diagenesis of biogenic silica. Phillipsite at Site 551 (Section 551-5-2) may originate from volcanogenie material.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A bulk-sediment and clay-fraction X-ray diffraction study of samples from Deep Sea Drilling Project Leg 60 shows an abundance of the following minerals: plagioclase feldspar, zeolite, smectite, Fe-Mg chlorite, attapulgite, and serpentine. Amorphous compounds are also abundant. The variations in abundance of the different components correspond to episodes of volcanic activity through time. Deposits from periods of great activity are composed of sediments very rich in amorphous matter and in "primary" minerals (e.g., plagioclase feldspars). During relatively quiet periods, clay minerals and zeolites predominate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nd and Pb isotopes were measured on the fine fraction of one sediment core drilled off southern Greenland. This work aims to reconstruct the evolution of deep circulation patterns in the North Atlantic during the Holocene on the basis of sediment supply variations. For the last 12 kyr, three sources have contributed to the sediment mixture: the North American Shield, the Pan-African and Variscan crusts, and the Mid-Atlantic Ridge. Clay isotope signatures indicate two mixtures of sediment sources. The first mixture (12.2-6.5 ka) is composed of material derived from the North American shield and from a "young" crustal source. From 6.5 ka onward the mixture is characterized by a young crustal component and by a volcanic component characteristic of the Mid-Atlantic Ridge. Since the significant decrease in proximal deglacial supplies, the evolution of the relative contributions of the sediment sources suggests major changes in the relative contributions of the deep water masses carried by the Western Boundary Undercurrent over the past 8.4 kyr. The progressive intensification of the Western Boundary Undercurrent was initially associated mainly with the transport of the Northeast Atlantic Deep Water mass until 6.5 ka and with the Denmark Strait Overflow Water thereafter. The establishment of the modern circulation at 3 ka suggests a reduced influence of the Denmark Strait Overflow Water, synchronous with the full appearance of the Labrador Seawater mass. Our isotopic data set emphasizes several changes in the relative contribution of the two major components of North Atlantic Deep Water throughout the Holocene.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Leg 80 basalts drilled on the Porcupine Abyssal Plain 10 km southwest of Goban Spur (Hole 550B) and on the western edge of Goban Spur (Hole 551), respectively, are typical light-rare-earth-element- (LREE-) depleted oceanic tholeiites. The basalts from the two holes are almost identical; most of their primary geochemical and mineralogical characteristics have been preserved, but they have undergone some low-temperature alteration by seawater, such as enrichment in K, Rb, and Cs and development of secondary potassic minerals of the "brownstone facies." K/Ar dating fail to give realistic emplacement ages; the apparent ages obtained become younger with alteration (causing an increase in K2O). Hole 551 basalts are clearly different from the continental tholeiites emplaced on the margins of oceanizing domains during the prerift and synrift stages.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Basalts from DSDP Site 417 (109 Ma) exhibit the effects of several stages of alteration reflecting the evolution of seawater-derived solution compositions and control by the structure and permeability of the crust. Characteristic secondary mineral assemblages occur in often superimposed alteration zones within individual basalt fragments. By combining bulk rock and single phase chemical analyses with detailed mineralogic and petrographic studies, chemical changes have been determined for most of the alteration stages identified in the basalts. 1) Minor amounts of saponite, chlorite, and pyrite formed locally in coarse grained portions of massive units, possibly at high temperatures during initial cooling of the basalts. No chemical changes could be determined for this stage. 2) Possible mixing of cooled hydrothermal fluids with seawater resulted in the formation of celadonite-nontronite and Fe-hydroxide-rich black halos around cracks and pillow rims. Gains of K, Rb, H20, increase of Fe 3 +/FeT and possibly some losses of Ca and Mg occurred during this stage. 3a) Extensive circulation of oxygenated seawater resulted in the formation of various smectites, K-feldspar, and Fe-hydroxides in brown and light grey alteration zones around formerly exposed surfaces. K, Rb, H20, and occasionally P were added to the rocks, Fe3+/FeT increased, and Ca, Mg, Si and occasionally Al and Na were lost. 3 b) Anoxic alteration occurred during reaction of basalt with seawater at low water-rock ratios, or with seawater that had previously reacted with basalt. Saponite-rich dark grey alteration zones formed which exhibit very little chemical change: generally only slight increases in Fe 3 +/FeT and H20 occurred. 4) Zeolites and calcite formed from seawater-derived fluids modified by previous reactions with basalt. Chemical changes involved increases of Ca, Na, H20 , and CO2 in the rocks. 5) A late stage of anoxic conditions resulted in the formation of minor amounts of Mn-calcites and secondary sulfides in previously oxidized rocks. No chemical changes were determined for this stage. Recognition of such alteration sequences is important in understanding the evolution of submarine hydrothermal systems and in interpreting chemical exchange due to seawater-basalt reactions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mineralogy of both bulk- and clay-sized fractions of samples from Sites 671, 672, and 674 of ODP Leg 110 was determined by X-ray diffraction. The major minerals include quartz, calcite, plagioclase feldspar, and the clay minerals smectite, illite, and kaolinite. The smectite is a dioctahedral montmorillonite and is derived primarily from degradation of volcanic ash. Percentage of smectite varies with sediment age; Miocene and Eocene sediments are the most smectite-rich. High smectite content tends to correlate with elevated porosity, presumably because of the ability of smectite clays to absorb significant amounts of interlayer water. Because of a change in physical properties, the decollement zone at Site 671 formed in sediments immediately subjacent to a section of smectite-rich, high-porosity, Miocene-age sediments. Sediments above the decollement at Site 671, as well as all sediments analyzed from Sites 672 and 674, contain nearly pure smectite characteristic of the alteration of volcanic ash. Within the decollement zone and underthrust sequence, however, the smectite contains up to 65% illite interlayers. Although the illite/smectite could be interpreted as detrital clay derived from South America, its absence in the sediments stratigraphically equivalent to the decollement and underthrust sequences at Sites 672 and 674 favors the interpretation that it originated by diagenetic alteration of pre-existing smectite similar to that in the overlying sediments. A significant percentage of the freshening of the pore waters observed in these zones could be due to the water released during smectite dehydration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Ocean Drilling Program Leg 188 Site 1165 was drilled on the Wild Drift on the Continental Rise off Prydz Bay, East Antarctica to a total depth of 999.1 meters below seafloor (mbsf). It recovered an extensive suite of terrigenous and hemipelagic sediments of early Miocene to Pleistocene age. Of special interest in this study is the sediment column between 0 and 50 mbsf, which consists of a well-preserved section of Pliocene-Pleistocene-age sediments that was sampled at 10-cm intervals. Multiproxy study of this interval could show possible intervals of expansions of the ice-sheet across the continental shelves and express the climatic evolution in Antarctica, particularly during the 'middle' Pliocene warm period (3.15 to 2.85 Ma) which may provide an indication of how the Earth responds to a rise of its surface temperature. According to the existing age model, the upper 50 mbsf stratigraphic sequence of Site 1165 reaches back to ~4.9 Ma. Throughout this interval, the clay-mineral content is characterized by fluctuations of individual clay minerals, particularly smectite and chlorite. The smectite concentration varies mainly between 0% and 30%. Illite fluctuates less between 50% and 80%, and kaolinite varies mainly between 10% and 20%. Chlorite concentrations are mainly 0% to 10%. There is also a noticeable change in magnetic susceptibility at ~34 mbsf that is clearly indicated in the composition of the clay-mineral suite. At this level, smectite decreases and illite, kaolinite and chlorite show some variability. In particular, there is a slight but persistent increase in chlorite. The results from the Plio-Pleistocene transition, with evenly fluctuating smectite and illite contents and the gradually increasing chlorite content, may indicate cooler conditions compared to the mid-Pliocene conditions. Slight increase in illite content and decrease in smectite content towards Pleistocene supports the previous assumption. The results from the mid-Pliocene with the increasing smectite content and decreasing illite content may indicate warmer and possibly interglacial conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The grain-size study and analyses of bulk sediment and clay mineral composition of samples collected from the dominant lithologies recovered at ODP Site 646, located on the northern flank of the Eirik Ridge (Labrador Sea), show variations indicating that contour-following currents, linked to Norwegian Sea Overflow Water (NSOW), have controlled sedimentation since the early Pliocene. These currents were influential until the early Pleistocene, despite the onset of major ice-rafting at about 2.5 Ma. A major mineralogical change occurred during the late Miocene: a decrease in the smectite to illite and chlorite ratio and a decrease of the crystallinity of smectites. This change indicates a renewing of the source rocks, which could result from an important hydrological change at this time. This change also is depicted by grain-size data that suggest the bottom current influence should be set earlier than the Pliocene.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The upper Miocene sedimentary sequence of Site 652, located on the lower continental margin of eastern Sardinia, was cored and logged during Ocean Drilling Program (ODP) Leg 107. Geophysical and geochemical logs from the interval 170-365 m below seafloor (mbsf), as well as various core measurements (CaCO3, grain size, X-ray diffraction), provide a mineralogical-geochemical picture that is interpreted in the framework of the climatic and tectonic evolution of the western Tyrrhenian. The results indicate the presence of short- and long-term mineralogical variations. Short-term variations are represented by calcium-carbonate fluctuations in which the amount of CaCO3 is correlated to the grain size of the sediments; coarser sediments are associated with high carbonate content and abundant detrital material. Long-term variation corresponds to a gross grain-size change in the upper part of the sequence, where predominantly fine-grained sediments may indicate a gradual deepening of the lacustrine basin towards the Pliocene. Regional climatic changes and rift-related tectonism are possible causes of this variability in the sedimentation patterns. The clay association is characterized by chlorite, illite, and smectite as dominant minerals, as well as mixed-layers clays, kaolinite, and palygorskite. Chlorite, mixed-layers clays, and illite increase at the expense of smectite below the pebble zone (335 mbsf). This is indicative of diagenetic processes related to the high geothermal gradient and to the chemistry of the evaporative pore waters, rather than to changes in the depositional environment.