423 resultados para Cibicidoides spp.
Resumo:
Stable carbon and oxygen isotope analyses were conducted on well-preserved planktonic and benthic foraminifers from a continuous middle Eocene to Oligocene sequence at Ocean Drilling Program (ODP) Site 748 on the Kerguelen Plateau. Benthic foraminifer d18O values show a 1.0 per mil increase through the middle and upper Eocene, followed by a rapid 1.2 per mil increase in the lowermost Oligocene (35.5 Ma). Surface-dwelling planktonic foraminifer d18O values increase in the lowermost Oligocene, but only by 0.6 per mil whereas intermediate-depth planktonic foraminifers show an increase of about l.0 per mil. Benthic foraminifer d13C values increase by 0.9 per mil in the lowermost Oligocene at precisely the same time as the large d18O increase, whereas planktonic foraminifer d13C values show little or no change. Site 748 oxygen isotope and paleontological records suggest that southern Indian Ocean surface and intermediate waters underwent significant cooling from the early to late Eocene. The rapid 1.2 per mil oxygen isotope increase recorded by benthic foraminifers just above the Eocene/Oligocene boundary represents the ubiquitous early Oligocene d18O event. The shift here is unique, however, as it coincided with the sudden appearance of ice-rafted debris (IRD), providing the first direct link between Antarctic glacial activity and the earliest Oligocene d18O increase. The d18O increase caused by the ice-volume change in the early Oligocene is constrained by (1) related changes in the planktonic to benthic foraminifer d18O gradient at Site 748 and (2) comparisons of late Eocene and early Oligocene planktonic foraminifer d18Ovalues from various latitudes. Both of these records indicate that 0.3 per mil to 0.4 per mil of the early Oligocene d18O increase was ice-volume related.
Resumo:
Investigating the inter-basin deep water exchange between the Pacific and Atlantic Oceans over glacial-interglacial climate cycles is important for understanding circum-Antarctic Southern Ocean circulation changes and their impact on the global Meridional Overturning Circulation. We use benthic foraminiferal d13C records from the southern East Pacific Rise to characterize the d13C composition of Circumpolar Deep Water in the South Pacific, prior to its transit through the Drake Passage into the South Atlantic. A comparison with published South Atlantic deep water records from the northern Cape Basin suggests a continuous water mass exchange throughout the past 500 ka. Almost identical glacial-interglacial d13C variations imply a common deep water evolution in both basins suggesting persistent Circumpolar Deep Water exchange and homogenization. By contrast, deeper abyssal waters occupying the more southern Cape Basin and the southernmost South Atlantic have lower d13C values during most, but not all, stadial periods. We conclude that these values represent the influence of a more southern water mass, perhaps AABW. During many interglacials and some glacial periods, the gradient between Circumpolar Deep Water and the deeper southern Cape Basin bottom water disappears suggesting either no presence of AABW or indistinguishable d13C values of both water masses.
Resumo:
Oxygen and carbon isotope records are important tools used to reconstruct past ocean and climate conditions, with those of benthic foraminifera providing information on the deep oceans. Reconstructions are complicated by interspecies isotopic offsets that result from microhabitat preferences (carbonate precipitation in isotopically distinct environments) and vital effects (species-specific metabolic variation in isotopic fractionation). We provide correction factors for early Cenozoic benthic foraminifera commonly used for isotopic measurements (Cibicidoides spp., Nuttallides truempyi, Oridorsalis spp., Stensioina beccariiformis, Hanzawaia ammophila, and Bulimina spp.), showing that most yield reliable isotopic proxies of environmental change. The statistical methods and larger data sets used in this study provide more robust correction factors than do previous studies. Interspecies isotopic offsets appear to have changed through the Cenozoic, either (1) as a result of evolutionary changes or (2) as an artifact of different statistical methods and data set sizes used to determine the offsets in different studies. Regardless of the reason, the assumption that isotopic offsets have remained constant through the Cenozoic has introduced an 1-2°C uncertainty into deep sea paleotemperature calculations. In addition, we compare multiple species isotopic data from a western North Atlantic section that includes the Paleocene-Eocene thermal maximum to determine the most reliable isotopic indicator for this event. We propose that Oridorsalis spp. was the most reliable deepwater isotopic recorder at this location because it was best able to withstand the harsh water conditions that existed at this time; it may be the best recorder at other locations and for other extreme events also.
Resumo:
Benthic foraminifers were studied from lower Paleocene through upper Oligocene sections from Sites 747 and 748. The composition of the benthic foraminifer species suggests a middle to lower bathyal (600-2000 m) paleodepth during the Neogene and a probable upper abyssal (2000-3000 m) paleodepth during the Paleocene at Site 747. Site 748 is thought to have remained at middle to lower bathyal paleodepths throughout the Cenozoic. Principal component analysis distinguished four major benthic foraminifer assemblages: (1) a Paleocene Stensioina beccariiformis assemblage at Sites 747 and 748, (2) an early Eocene Nuttallides truempyi assemblage at lower bathyal Site 747, (3) an early through middle Eocene Stilostomella-Lenticulina assemblage at middle bathyal Site 748, and (4) a latest Eocene through Oligocene Cibicidoides-Astrononion pusillum assemblage at both sites. Major benthic foraminifer changes, as indicated by the principal components and first and last appearances, occurred at or close to the Paleocene/Eocene boundary, and in the late Eocene close to the middle/late Eocene boundary.
Resumo:
A 87Sr/86Sr isotope curve of the middle Eocene to Oligocene was produced from analysis of foraminifera in Ocean Drilling Program Hole 689B, Maud Rise, near the coast of Antarctica. Sediments from the hole are well preserved with no evidence of diagenetic alteration. The sequence is nearly complete from 46.3 to 24.8 Ma, with an average sampling interval of 166 kyr. Excellent magnetostratigraphy in Hole 689B allows calibration to the geomagnetic polarity time scale of Cande and Kent (1992). Marine strontium isotopic ratios were nearly stable from 46.3 to 35.5 Ma, averaging near 0.70773, after which they began to increase. A slow increase began after 40.4 Ma, rising at a rate of only about 8*10**-6/m.y. from base values of 0.707707. From 35.5 Ma to 24.8 Ma the average slope increased to 40*10**-6/m.y. The slope remained constant at least until 24.8 Ma, when the record becomes discontinuous owing to unconformities. We evaluate several possible controls on the marine strontium isotope curve that could have led to the observed growth in 87Sr/86Sr ratios near the Eocene/Oligocene boundary. Three mechanisms are considered, including the onset of Antarctic glaciation, increased mountain building in the Himalayan-Tibetan region, and decreased hydrothermal activity. None of the mechanisms alone seems to adequately explain the increased 87Sr/86Sr ratios during the Oligocene. Glaciation as a weathering agent was too episodic and probably began too late to explain the upturn in marine 87Sr/86Sr ratios. There is evidence that uplift in the Himalayan-Tibetan region began in the Miocene, much too late to control Oligocene strontium isotope ratios. Lastly, hydrothermal flux changes since the Eocene were apparently not great enough alone to account for the rise in marine 87Sr/86Sr ratios. We suggest that a combination of causes, such as decreased hydrothermal activity perhaps followed by increased glaciation and mountain building, might best explain the growth of the marine 87Sr/86Sr curve during the Oligocene.
Resumo:
Late Cenozoic benthic foraminiferal faunas from the Caribbean Deep Sea Drilling Project (DSDP) Site 502 (3052 m) and East Pacific DSDP Site 503 (3572 m) were analyzed to interpret bottom-water masses and paleoceanographic changes occurring as the Isthmus of Panama emerged. Major changes during the past 7 Myr occur at 6.7-6.2, 3.4, 2.0, and 1.1 Ma in the Caribbean and 6.7-6.4, 4.0-3.2, 2.1, 1.4, and 0.7 Ma in the Pacific. Prior to 6.7 Ma, benthic foraminiferal faunas at both sites indicate the presence of Antarctic Bottom Water (AABW). After 6.7 Ma benthic foraminiferal faunas indicate a shift to warmer water masses: North Atlantic Deep Water (NADW) in the Caribbean and Pacific Deep Water (PDW) in the Pacific. Flow of NADW may have continued across the rising sill between the Caribbean and Pacific until 5.6 Ma when the Pacific benthic foraminiferal faunas suggest a decrease in bottom-water temperatures. After 5.6 Ma deep-water to intermediate-water flow across the sill appears to have stopped as the bottom-water masses on either side of the sill diverge. The second change recorded by benthic foraminiferal faunas occurs at 3.4 Ma in the Caribbean and 4.0-3.2 Ma in the Pacific. At this time the Caribbean is flooded with cold AABW, which is either gradually warmed or is replaced by Glacial Bottom Water (GBW) at 2.0 Ma and by NADW at 1.1 Ma. These changes are related to global climatic events and to the depth of the sill between the Caribbean and Atlantic rather than the rising Isthmus of Panama. Benthic foraminiferal faunas at East Pacific Site 503 indicate a gradual change from cold PDW to warmer PDW between 4.0 and 3.2 Ma. The PDW is replaced by the warmer, poorly oxygenated PIW at 2.1 Ma. Although the PDW affects the faunas during colder intervals between 1.4 and 0.7 Ma, the PIW remains the principal bottom-water mass in the Guatemala Basin of the East Pacific.
Resumo:
Oligocene to Pleistocene bathyal benthic foraminifers at Broken Ridge (Site 754) and Ninetyeast Ridge (Site 756), eastern Indian Ocean, were investigated for then- stratigraphic distribution and their response to paleoceanographic changes. Q-mode factor analysis was applied to relative abundance data of the most abundant benthic foraminifers. At Site 754, seven varimax assemblages were recognized from the upper Oligocene to the Pleistocene: the Gyroidina orbicularis-Rectuvigerina striata Assemblage in the uppermost Oligocene; the Lenticulina spp. Assemblage in the upper Oligocene to lower Miocene, and in lower Miocene to lowermost middle Miocene; the Burseolina cf. pacifica-Cibicidoides mundulus Assemblage in the lower Miocene; the Planulina wuellerstorfi Assemblage in the upper middle Miocene; the Globocassidulina spp. Assemblage in the upper Miocene; the Gavelinopsis lobatulus-Uvigerina proboscidea Assemblage in the Pliocene; and the Ehrenbergina spp. Assemblage in the Pleistocene. The major faunal changes are complex, but exist between the Lenticulina spp. Assemblage and the P. wuellerstorfi Assemblage at ~13.8 Ma, and between the Ehrenbergina spp. Assemblage and the G. lobatulus Assemblage at ~5 Ma. The development of the P. wuellerstorfi and Globocassidulina spp. Assemblages after 13.8 Ma is correlated with the decrease in temperature of the intermediate waters of the ocean, in turn related to Antarctic glacial expansion. The faunal changes at ~5 Ma are related to the development of low oxygen intermediate water, formed in the presence of a strong thermocline. At Site 756, six varimax assemblages are distributed as follows: the Cibicidoides cf. mundulus-Oridorsalis umbonatus Assemblage in the lower Oligocene; the Epistominella umbonifera-Cibicidoides mundulus Assemblage from the upper Oligocene to the lower Miocene; the Cibicidoides mundulus-Burseolinapacifica Assemblage from lower Miocene to the lower middle Miocene; the Globocassidulina spp. Assemblage from the upper lower Miocene to the Pliocene; the Uvigerina proboscidea Assemblage in the upper Miocene and the Pliocene; and the Globocassidulina sp. D Assemblage in the Pliocene. The main faunal change at this site is between the E. umbonifera Assemblage and the Globocassidulina spp. Assemblage, at ~17.1 Ma. The timing of this faunal change is coeval with faunal changes in the North Atlantic and the Pacific. The change is related to a change in bottom water characteristics caused by an increased influence of carbonate corrosive water from the Antarctic source region, and a change in surface productivity. A low oxygen event at Site 756, which started at about 7.3 Ma, occurred about 2.3 m.y. before that at Site 754. The different response to global paleoceanographic changes is not yet explained, but may be due to the difference of marine topography and the degree of upwelling
Resumo:
During ODP Leg 166, the recovery of cores from a transect of drill sites across the Bahamas margin from marginal to deep basin environments was an essential requirement for the study of the response of the sedimentary systems to sea-level changes. A detailed biostratigraphy based on planktonic foraminifera was performed on ODP Hole 1006A for an accurate stratigraphic control. The investigated late middle Miocene-early Pliocene sequence spans the interval from about 12.5 Ma (Biozone N12) to approximately 4.5 Ma (Biozone N19). Several bioevents calibrated with the time scale of Berggren et al. (1995a,b) were identified. The ODP Site 1006 benthic oxygen isotope stratigraphy can be correlated to the corresponding deep-water benthic oxygen isotope curve from ODP Site 846 in the Eastern Equatorial Pacific (Shackleton et al., 1995. Proc. ODP Sci. Res. 138, 337-356), which was orbitally tuned for the entire Pliocene into the latest Miocene at 6.0 Ma. The approximate stratigraphic match of the isotopic signals from both records between 4.5 and 6.0 Ma implies that the paleoceanographic signal from the Bahamas is not simply a record of regional variations but, indeed, represents glacio-eustatic fluctuations. The ODP Site 1006 oxygen and carbon isotope record, based on benthic and planktonic foraminifera, was used to define paleoceanographic changes on the margin, which could be tied to lithostratigraphic events on the Bahamas carbonate platform using seismic sequence stratigraphy. The oxygen isotope values show a general cooling trend from the middle to late Miocene, which was interrupted by a significant trend towards warmer sea-surface temperatures (SST) and associated sea-level rise with decreased ice volume during the latest Miocene. This trend reached a maximum coincident with the Miocene/Pliocene boundary. An abrupt cooling in the early Pliocene then followed the warming which continued into the earliest Pliocene. The late Miocene paleoceanographic evolution along the Bahamas margin can be observed in the ODP Site 1006 delta13C values, which support other evidence for the beginning of the closure of the Panama gateway at 8 Ma followed by a reduced intermediate water supply of water from the Pacific into the Caribbean at about 5 Ma. A general correlation of lower sedimentation rates with the major seismic sequence boundaries (SSBs) was observed. Additionally, the SSBs are associated with transitions towards more positive oxygen isotope excursions. This observed correspondence implies that the presence of a SSB, representing a density impedance contrast in the sedimentary sequence, may reflect changes in the character of the deposited sediment during highstands versus those during lowstands. However, not all of the recorded oxygen isotope excursions correspond to SSBs. The absence of a SSB in association with an oxygen isotope excursion indicates that not all oxygen isotope sea-level events impact the carbonate margin to the same extent, or maybe even represent equivalent sea-level fluctuations. Thus, it can be tentatively concluded that SSBs produced on carbonate margins do record sea-level fluctuations but not every sea-level fluctuation is represented by a SSB in the sequence stratigraphic record.
Resumo:
Oxygen and carbon isotopic records of monogeneric and monospecific benthic and planktonic foraminifer samples from Sites 744 and 738 drilled on the southern end of the Kerguelen Plateau during ODP Leg 119 reveal the evolution of polar Indian Ocean water masses from the early Paleocene to the middle Miocene. Results from Site 738 are from sediments of early Paleocene to late Eocene age and those from Site 744 are late Eocene to middle Miocene. They suggest that intermediate waters at this location did not originate in the high latitudes during the early Eocene. Surface and near-surface waters cooled gradually after the maximum warming at 56 Ma, when surface waters were about 18°C. Intermediate waters cooled after 52 Ma. The highest temperatures (lowest d18O values) of the Cenozoic occurred from 56 to 52 Ma. The records of equatorial Pacific Site 577 and Weddell Sea Site 690 resemble that of the polar Indian Ocean in this interval. The well-documented d13C excursions toward positive values in the late Paleocene and negative values in the early Eocene are represented by foraminifers increases of 1.5 per mil and following decreases of about 3 per mil. Most of the cooling in the Paleogene occurred in the middle and late Eocene. A 2°C decrease of surface water at about 38.4 Ma heralded the beginning of extensive glacial conditions in Antarctica in the early Oligocene. At Site 744, the global d18O shift just above the Eocene/Oligocene boundary is 1.15 per mil, and occurred gradually in sediments dated at 36.5-35.9 Ma. Ice-rafted debris was deposited beginning at 36.1 Ma for about the next 2 m.y. This simultaneous occurrence of the global d18O shift with ice-rafted debris is evidence for early Oligocene glaciation in East Antarctica. Moreover, early and late Oligocene Cibicidoides d18O values between 2 and 2.2 per mil indicate intermediate water cooling and a small ice-volume effect. Production of cold dense bottom water in Antarctica was intensified with continental cooling and glaciation in the early Oligocene. Comparison of Oligocene and early Miocene isotopic data from high-latitude and low-latitude deepsea sites indicates that there were probably at least two sources of bottom waters at this time.
Resumo:
Benthic foraminifers were examined from turbiditic sequences at Sites 717, 718, and 719. Three assemblages, 1, 2, 3, were identified and are interpreted as reflecting different bathymetric environments. Based on the distribution patterns of these assemblages, six paleontological intervals (a to f) were distinguished and correlated to the lithostratigraphic units and calcareous nannofossil biostratigraphy and biochronology. This relationship indicated three signals of climatic deterioration, the first in the late Pliocene (around 2.42 Ma) and two others in the Pleistocene (younger than 1.59 Ma and 0.93 Ma).
Resumo:
Since the seminal work by Hays et al. (1976), a plethora of studies has demonstrated a correlation between orbital variations and climatic change. However, information on how changes in orbital boundary conditions affected the frequency and amplitude of millennial-scale climate variability is still fragmentary. The Marine Isotope Stage (MIS) 19, an interglacial centred at around 785 ka, provides an opportunity to pursue this question and test the hypothesis that the long-term processes set up the boundary conditions within which the short-term processes operate. Similarly to the current interglacial, MIS 19 is characterised by a minimum of the 400-kyr eccentricity cycle, subdued amplitude of precessional changes, and small amplitude variations in insolation. Here we examine the record of climatic conditions during MIS 19 using high-resolution stable isotope records from benthic and planktonic foraminifera from a sedimentary sequence in the North Atlantic (Integrated Ocean Drilling Program Expedition 306, Site U1313) in order to assess the stability and duration of this interglacial, and evaluate the climate system's response in the millennial band to known orbitally induced insolation changes. Benthic and planktonic foraminiferal d18O values indicate relatively stable conditions during the peak warmth of MIS 19, but sea-surface and deep-water reconstructions start diverging during the transition towards the glacial MIS 18, when large, cold excursions disrupt the surface waters whereas low amplitude millennial scale fluctuations persist in the deep waters as recorded by the oxygen isotope signal. The glacial inception occurred at ~779 ka, in agreement with an increased abundance of tetra-unsaturated alkenones, reflecting the influence of icebergs and associated meltwater pulses and high-latitude waters at the study site. After having combined the new results with previous data from the same site, and using a variety of time series analysis techniques, we evaluate the evolution of millennial climate variability in response to changing orbital boundary conditions during the Early-Middle Pleistocene. Suborbital variability in both surface- and deep-water records is mainly concentrated at a period of ~11 kyr and, additionally, at ~5.8 and ~3.9 kyr in the deep ocean; these periods are equal to harmonics of precession band oscillations. The fact that the response at the 11 kyr period increased over the same interval during which the amplitude of the response to the precessional cycle increased supports the notion that most of the variance in the 11 kyr band in the sedimentary record is nonlinearly transferred from precession band oscillations. Considering that these periodicities are important features in the equatorial and intertropical insolation, these observations are in line with the view that the low-latitude regions play an important role in the response of the climate system to the astronomical forcing. We conclude that the effect of the orbitally induced insolation is of fundamental importance in regulating the timing and amplitude of millennial scale climate variability.
Resumo:
Cores from Sites 1129, 1131, and 1132 (Ocean Drilling Program (ODP) Leg 182) on the uppermost slope at the edge of the continental shelf in the Great Australian Bight reveal the existence of upper Pleistocene bryozoan reef mounds, previously only detected on seismic lines. Benthic foraminiferal oxygen isotope data for the last 450,000 years indicate that bryozoan reef mounds predominantly accumulated during periods of lower sea level and colder climate since stage 8 at Sites 1129 and 1132 and since stage 4 at the deeper Site 1131. During glacials and interstadials (stages 2-8) the combination of lowered sea level, increased upwelling, and absence of the Leeuwin Current probably led to an enhanced carbon flux at the seafloor that favored prolific bryozoan growth and mound formation at Site 1132. At Site 1129, higher temperatures and downwelling appear to have inhibited the full development of bryozoan mounds during stages 2-4. During that time, favorable hydrographic conditions for the growth of bryozoan mounds shifted downslope from Site 1129 to Site 1131. Superimposed on these glacial-interglacial fluctuations is a distinct long-term paleoceanographic change. Prior to stage 8, benthic foraminiferal assemblages indicate low carbon flux to the seafloor, and bryozoan mounds, although present closer inshore, did not accumulate significantly at Sites 1129 and 1132, even during glacials. Our results show that the interplay of sea level change (eustatic and local, linked to platform progradation), glacial-interglacial carbon flux fluctuations (linked to local hydrographic variations), and possibly long-term climatic change strongly influenced the evolution of the Great Australian Bight carbonate margin during the late Pleistocene.
Resumo:
We correlated Miocene d18O increases at Ocean Drilling Program Site 747 with d18O increases previously identified at North Atlantic Deep Sea Drilling Project Sites 563 and 608. The d18O increases have been directly tied to the Geomagnetic Polarity Time Scale (GPTS) at Site 563 and 608, and thus our correlations at Site 747 provide a second-order correlation to the GPTS. Comparison of the oxygen isotope record at Site 747 with records at Sites 563 and 608 indicates that three as-yet-undescribed global Miocene d18O increases may be recognized and used to define stable isotope zones. The d18O maxima associated with the bases of Zones Mila, Milb, and Mi7 have magnetochronologic age estimates of 21.8, 18.3, and 8.5 Ma, respectively. The correlation of a d18O maximum at 70 mbsf at Site 747 to the base of Miocene isotope Zone Mi3 (13.6 Ma) provides a revised interpretation of four middle Miocene normal polarity intervals observed between 77 and 63 mbsf at Hole 747A. Oxygen isotope stratigraphy indicates that the reversed polarity interval at 70 mbsf, initially interpreted as Chronozone C5AAr, should be C5ABr. Instead of a concatenated Chronozone C5AD-C5AC with distinct Chronozones C5AB, C5AA, and C5A (as in the preliminary interpretation), d18O stratigraphy suggests that these normal polarity intervals are Chronozones C5AD, C5AC, and C5AB, whereas Chronozones C5AA-C5A are concatenated. This interpretation is supported by the d13C correlations. The upper Miocene magnetostratigraphic record at Hole 747A is ambiguous. Two upper Miocene d18O events at Site 747 can be correlated to the oxygen isotope records at Site 563 and 608 using the magnetostratigraphy derived at Hole 747B. Our chronostratigraphic revisions highlight the importance of stable isotope stratigraphy in attaining an integrated stratigraphic framework for the Miocene.