209 resultados para Ceara


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paleoproductivity, nutrient burial, and carbon cycling were investigated across the Eocene/Oligocene (E/O) boundary (begin to end; 36.9-32.7 Ma at ~40 kyr resolution, timescale of Shackleton et al. (1999, doi:10.1098/rsta.1999.0407) at Ocean Drilling Program Site 925 on the Ceara Rise in the western equatorial Atlantic (3040 m present water depth; 748.26-850.70 mbsf). Downcore bulk sediment records of biogenic barium, total reactive phosphorus, biogenic silica, and calcium carbonate are interpreted to represent export production, net nutrient burial, biogenic opal production, and inorganic carbon burial, respectively. The global positive excursion in d13C subsequent to the E/O boundary is recorded at Site 925. Export production appears to have been externally forced by orbital parameters at eccentricity frequencies during the study interval, based on spectral analysis of the biogenic barium and reactive phosphorus records. Biogenic silica production or preservation increased after the Eocene/Oligocene boundary to a higher baseline, although overall productivity and nutrient burial did not increase, based on barium and reactive phosphorus records. Thus, although absolute production did not increase at this site, a shift in relative abundance of siliceous versus carbonate productivity may have resulted in a change in relative organic carbon burial. This may have contributed to the positive excursion in global oceanic d13C subsequent to the Eocene/Oligocene boundary, although the silica maximum persists after the carbon isotope excursion ends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a 5.3-Myr stack (the ''LR04'' stack) of benthic d18O records from 57 globally distributed sites aligned by an automated graphic correlation algorithm. This is the first benthic delta18O stack composed of more than three records to extend beyond 850 ka, and we use its improved signal quality to identify 24 new marine isotope stages in the early Pliocene. We also present a new LR04 age model for the Pliocene-Pleistocene derived from tuning the delta18O stack to a simple ice model based on 21 June insolation at 65 N. Stacked sedimentation rates provide additional age model constraints to prevent overtuning. Despite a conservative tuning strategy, the LR04 benthic stack exhibits significant coherency with insolation in the obliquity band throughout the entire 5.3 Myr and in the precession band for more than half of the record. The LR04 stack contains significantly more variance in benthic delta18O than previously published stacks of the late Pleistocene as the result of higher resolution records, a better alignment technique, and a greater percentage of records from the Atlantic. Finally, the relative phases of the stack's 41- and 23-kyr components suggest that the precession component of delta18O from 2.7-1.6 Ma is primarily a deep-water temperature signal and that the phase of d18O precession response changed suddenly at 1.6 Ma.