458 resultados para Bay of Calvi, Corsica
Resumo:
Acoustic and pelagic trawl data were collected during various pelagic surveys carried out by IFREMER in May between 2000 and 2012 (except 2001), on the eastern continental shelf of the Bay of Biscay (Pelgas series). The acoustic data were collected with a Simrad EK60 echosounder operating at 38 kHz (beam angle at -3 dB: 7°, pulse length set to 1.024 ms). The echosounder transducer was mounted on the vessel keel, at 6 m below the sea surface. The sampling design were parallel transects spaced 12 nm apart which were orientated perpendicular to the coast line from 20 m to about 200 m bottom depth. The nominal sailing speed was 10 knots and 3 knots on average during fishing operations. The scrutinising (species identification) of acoustic data was done by first characterising acoustic schools by type and then linking these types with the species composition of specific trawl hauls. The data set contains nautical area backscattering values, biomass and abundance estimates for blue whiting for one nautical mile long transect lines. Further information on the survey design, scrutinising and biomass estimation can be found in Doray et al. 2012.
Resumo:
Data were collected during various groundfish surveys carried out by IFREMER from October to December between 1997 and 2011, on the eastern continental shelf of the Bay of Biscay and in the Celtic Sea (EVHOE series). The sampling design was stratified according to latitude and depth. A 36/47 GOV trawl was used with a 20 mm mesh codend liner. Haul duration was 30 minutes at a towing speed of 4 knots. Fishing was restricted to daylight hours. Catch weights and catch numbers were recorded for all species and body size measured. The weights and numbers per haul were transformed into abundances per km**2 by considering the swept area of a standard haul (0.069 km**2).
Resumo:
Sediment dynamics on a storm-dominated shelf (western Bay of Plenty, New Zealand) were mapped and analyzed using the newly developed multi-sensor benthic profiler MARUM NERIDIS III. An area of 60 km × 7 km between 2 and 35 m water depth was surveyed with this bottom-towed sled equipped with a high-resolution camera for continuous close-up seafloor photography and a CTD with connected turbidity sensor. Here we introduce our approach of using this multi-parameter dataset combined with sidescan sonography and sedimentological analyses to create detailed lithofacies and bedform distribution maps and to derive regional sediment transport patterns. For the assessment of sediment distribution, photographs were classified and their spatial distribution mapped out according to associated acoustic backscatter from a sidescan sonar. This provisional map was used to choose target locations for surficial sediment sampling and subsequent laboratory analysis of grain size distribution and mineralogical composition. Finally, photographic, granulometric and mineralogical facies were combined into a unified lithofacies map and corresponding stratigraphic model. Eight distinct types of lithofacies with seawards increasing grain size were discriminated and interpreted as reworked relict deposits overlain by post-transgressional fluvial sediments. The dominant transport processes in different water depths were identified based on type and orientation of bedforms, as well as bottom water turbidity and lithofacies distribution. Observed bedforms include subaquatic dunes, coarse sand ribbons and sorted bedforms of varying dimensions, which were interpreted as being initially formed by erosion. Under fair weather conditions, sediment is transported from the northwest towards the southeast by littoral drift. During storm events, a current from the southeast to the northweast is induced which is transporting sediment along the shore in up to 35 m water depth. Shorewards oriented cross-shore transport is taking place in up to 60 m water depth and is likewise initiated by storm events. Our study demonstrates how benthic photographic profiling delivers comprehensive compositional, structural and environmental information, which compares well with results obtained by traditional probing methods, but offers much higher spatial resolution while covering larger areas. Multi-sensor benthic profiling enhances the interpretability of acoustic seafloor mapping techniques and is a rapid and economic approach to seabed and habitat mapping especially in muddy to sandy facies.
Resumo:
Density and diversity of bottom fauna population as dependent on sediment types and water depth is largely well known in Kiel Bay. This is in contrast to structures and processes of bioturbation, although generally it has a big influence on the benthic boundary layer and its processes, e.g., the metabolism of the bottom fauna, the mechanical properties, the age dating, and the large field of chemical processes. In the densely inhabited sands and muddy sands of the shallower waters with sediment thicknesses of some decimeters only, bioturbation is usually ubiquitous, and most of the structures left are monotonously of "biodeformational" character. At greater water depths, however, where a sedimentary column of several meters of Holocene is developed, the X-ray radiographs of numerous sediment cores show heterogeneous biogenic structures with regional and stratigraphical differentiation. They are described in terms of ichnofabrics and are interpreted on ethological knowledge of the related macrobenthos species. lmportant organisms creating specific traces include the bivalve Arctica (Cyprina) islandica and the polychaete worm Pectinaria koreni. These species are abundant in Kiel Bay and produce by their crawling-plowing mode of locomotion, a characteristic biogenic stratification, the "plow-sole structure". Other typical biogenic structures are tube traces, which are left by a number of different polychaetes occurring either singly, or as U-pairs mainly in mud sediments. Although sea urchins are rare to absent in Kiel Bay, layers of their characteristic traces Scolicia occur as witness of paleohydrographic events in channel sediments of the central bay. Plow-sole traces, polychaete-tube ichnofabric, Scolicia layers and alternations of laminated and bioturbated layers are considered as building blocks of a future "ichnostratigraphy" of Kiel Bay.
Resumo:
Continuous high-resolution mass accumulation rates (MAR) and X-ray fluorescence (XRF) measurements from marine sediment records in the Bay of Biscay (NE Atlantic) have allowed the determination of the timing and the amplitude of the 'Fleuve Manche' (Channel River) discharges during glacial stages MIS 10, MIS 8, MIS 6 and MIS 4-2. These results have yielded detailed insight into the Middle and Late Pleistocene glaciations in Europe and the drainage network of the western and central European rivers over the last 350 kyr. This study provides clear evidence that the 'Fleuve Manche' connected the southern North Sea basin with the Bay of Biscay during each glacial period and reveals that 'Fleuve Manche' activity during the glaciations MIS 10 and MIS 8 was significantly less than during MIS 6 and MIS 2. We correlate the significant 'Fleuve Manche' activity, detected during MIS 6 and MIS 2, with the extensive Saalian (Drenthe Substage) and the Weichselian glaciations, respectively, confirming that the major Elsterian glaciation precedes the glacial MIS 10. In detail, massive 'Fleuve Manche' discharges occurred at ca 155 ka (mid-MIS 6) and during Termination I, while no significant discharges are found during Termination II. It is assumed that a substantial retreat of the European ice sheet at ca 155 kyr, followed by the formation of ice-free conditions between the British Isles and Scandinavia until Termination II, allowed meltwater to flow northwards through the North Sea basin during the second part of the MIS 6. We assume that this glacial pattern corresponds to the Warthe Substage glacial maximum, therefore indicating that the data presented here equates to the Drenthe and the Warthe glacial advances at ca 175-160 ka and ca 150-140 ka, respectively. Finally, the correlation of our records with ODP site 980 reveals that massive 'Fleuve Manche' discharges, related to partial or complete melting of the European ice masses, were synchronous with strong decreases in both the rate of deep-water formation and the strength of the Atlantic thermohaline circulation. 'Fleuve Manche' discharges over the last 350 kyr probably participated, with other meltwater sources, in the collapse of the thermohaline circulation by freshening the northern Atlantic surface water.
Resumo:
The data set consists of maps of total velocity of the surface current in the Southeastern Bay of Biscay averaged over a time interval of 1 hour around the cardinal hour. Surface ocean velocities estimated by this HF Radar(4.65 MHz) are representative of the upper 2-3 meters of the ocean. The main objective of near real time processing is to produce the best product from available data at the time of processing. Total velocities are derived using least square fit that maps radial velocities measured from individual sites onto a cartesian grid. The final product is a map of the horizontal components of the ocean currents on a regular grid in the area of overlap of two or more radar stations.
Resumo:
Spark source mass spectroscopy was used to analyze 61 elements in ten ferromanganese nodules found near Glenora in the Bay of Quinte at the eastern end of Lake Ontario. Most minor elements, including As, Pb, and Hg, have concentrations between 1-100 µg/g. F, S, Co, Zn, and La have concentrations in 100 µg/g range. Ba and Sr are present at levels of 1% and 0.1% respectively. Compared to similar measurements on nodules found in the Great Lakes and in other parts of the globe, values reported here are generally lower. Compared to their marine equivalents, lake nodules appear to be inferior scavengers of minor elements. Examination of all available data corroborates the postulate that marine biological material is an important source of minor elements found in oceanic nodules.
Resumo:
The Northern Bay of Bengal (NBoB) is a globally important region for deep-sea organic matter (OM) deposition due to massive fluvial discharge from the Ganges-Brahmaputra-Meghna (G-B-M) rivers and moderate to high surface productivity. Previous studies have focused on carbon burial in turbiditic sediments of the Bengal Fan. However, little is known about the storage of carbon in pelagic and hemipelagic sediments of the Bay of Bengal over millennial time scales. This study presents a comprehensive history of OM origin and fate as well as a quantification of carbon sediment storage in the Eastern Bengal Slope (EBS) during the last 18 ka. Bulk organic proxies (TOC, TIC, TN, d13CTOC, d15NTN) and content and composition of total hydrolysable amino acids (THAA) in a sediment core (SO188-342KL) from the EBS were analyzed. Three periods of high OM accumulation were identified: the Late Glacial (LG), the Bölling/Alleröd (B/A), and the Early Holocene Climatic Optimum (EHCO). Lower eustatic sea level before 15 ka BP allowed a closer connection between the EBS and the fluvial debouch, favoring high terrestrial OM input to the core site. This connection was progressively lost between 15 and 7 ka BP as sea level rose to its present height and terrestrial OM input decreased considerably. Export and preservation of marine OM was stimulated during periods of summer monsoon intensification (B/A and EHCO) as a consequence of higher surface productivity enhanced by cyclonic-eddy nutrient pumping and fluvial nutrient delivery into the photic zone. Changes in the THAA composition indicate that the marine plankton community structure shifted from calcareous-dominated before 13 ka BP to siliceous-dominated afterwards. They also indicate that the relative proportion of marine versus terrestrial OM deposited at site 342KL was primarily driven by relative sea level and enlarged during the Holocene. The ballasting effect of lithogenic particles during periods of high coastal proximity and/or enhanced fluvial discharge promoted the export and preservation of OM. The high organic carbon accumulation rates in the EBS during the LG (18-17 ka BP) were 5-fold higher than at present and comparable to those of glacial upwelling areas. Despite the differences in sediment and OM transport and storage among the Western and Eastern sectors of the NBoB, this region remains important for global carbon sequestration during sea level low-stands. In addition, the summer monsoon was a key promotor of terrestrial and marine OM export to the deep-ocean, highlighting its relevance as regulator of the global carbon budget.
Resumo:
Analysis of composition and distribution of benthic foraminifers in six samples of bottom sediments obtained in the southeast Kandalaksha Bay of the White Sea at water depths of 20 to 155 m revealed their dependence on lithology and different hydrological characteristics. It is shown that living foraminifers populating relatively shallow areas of the bay (20-60 m), which are bathed by seasonally warmed intermediate water with temperature 0.7-1.5°C and salinity 26 per mil, are characterized by high abundance (250-750 specimens/10 ccm of wet sediment) and prevalence of agglutinated species (Eggerella advena, Recurvoides turbinatus, and others). Deeper (155 m) where cold and relatively saline deep water occurs (-1.4°C, 29.5 per mil), abundance is an order lower (30 specimens/10 ccm) and is dominated by calcareous taxa Cassidulina reniforme, an Arctic cold resistant species.