581 resultados para Atlantic, (South)
Resumo:
Five sites were drilled along a transect of the Walvis Ridge. The basement rocks range in age from 69 to 71 m.y., and the deeper sites are slightly younger, in agreement with the sea-floor-spreading magnetic lineations. Geophysical and petrological evidence indicates that the Walvis Ridge was formed at a mid-ocean ridge at anomalously shallow elevations. The basement complex, associated with the relatively smooth acoustic basement in the area, consists of pillowed basalt and massive flows alternating with nannofossil chalk and limestone that contain a significant volcanogenic component. Basalts are quartz tholeiites at the ridge crest and olivine tholeiites downslope. The sediment sections are dominated by carbonate oozes and chalks with volcanogenic material common in the lower parts of the sediment columns. The volcanogenic sediments probably were derived from sources on the Walvis Ridge. Paleodepth estimates based on the benthic fauna are consistent with a normal crustal-cooling rate of subsidence of the Walvis Ridge. The shoalest site in the transect sank below sea level in the late Paleocene, and benthic fauna suggest a rapid sea-level lowering in the mid-Oligocene. Average accumulation rates during the Cenozoic indicate three peaks in the rate of supply of carbonate to the sea floor, that is, early Pliocene, late middle Miocene, and late Paleocene to early Eocene. Carbonate accumulation rates for the rest of the Cenozoic averaged 1 g/cm**2/kyr. Dissolution had a marked effect on sediment accumulation in the deeper sites, particularly during the late Miocene, Oligocene, and middle to late Eocene. Changes in the rates of accumulation as a function of depth demonstrate that the upper part of the water column had a greater degree of undersaturation with respect to carbonate during times of high productivity. Even when the calcium carbonate compensation depth (CCD) was below 4400 m, a significant amount of carbonate was dissolved at the shallower sites. The flora and fauna of the Walvis Ridge are temperate in nature. Warmer-water faunas are found in the uppermost Maastrichtian and lower Eocene sediments, with cooler-water faunas present in the lower Paleocene, Oligocene, and middle Miocene. The boreal elements of the lower Pliocene are replaced by more temperate forms in the middle Pliocene. The Cretaceous-Tertiary boundary was recovered in four sites drilled, with the sediments containing well-preserved nannofossils but poorly preserved foraminifera.
Resumo:
The concentrations of rare earth elements (REEs) in seawater display systematic variations related to weathering inputs, particle scavenging and water mass histories. Here we investigate the REE concentrations of water column profiles in the Atlantic sector of the Southern Ocean, a key region of the global circulation and primary production. The data reveal a pronounced contrast between the vertical profiles in the Antarctic Circumpolar Current (ACC) and those to the south of the ACC in the Weddell Gyre (WG). The ACC profiles exhibit the typical increase of REE concentrations with water depth and a change in the shape of the profiles from near linear for the light REEs to more convex for the heavy REEs. In contrast, the WG profiles exhibit high REE concentrations throughout the water column with only the near surface samples showing slightly reduced concentrations indicative of particle scavenging. Seawater normalised REE patterns reveal the strong remineralisation signal in the ACC with the light REEs preferentially removed in surface waters and the mirror image pattern of their preferential release in deep waters. In the WG the patterns are relatively homogenous reflecting the prevalence of well-mixed Lower Circumpolar Deep Water (LCDW) that follows shoaling isopycnals in the region. In the WG particle scavenging of REEs is comparatively small and limited to the summer months by light limitation and winter sea ice cover. Considering the surface water depletion compared to LCDW and that the surface waters of the WG are replaced every few years, the removal rate is estimated to be on the order of 1 nmol/m3/yr for La and Nd. The negative cerium anomalies observed in deep waters are some of the strongest found globally with only the deepest waters in parts of the Pacific having stronger anomalies. These deep waters have been isolated from fresh continental REE inputs during their long journey through the abyssal Indo-Pacific ocean and suggests that the high REE concentrations found in the ACC and WG reflect contributions from old deep waters.
Resumo:
The valve area of Fragilariopsis kerguelensis, the most abundant diatom species in the Southern Ocean, strongly changes in size in response to varying conditions in the surface ocean. We examined the link, both in two iron fertilization experiments and in sediment samples covering several glacial Terminations, between size variability in this species and environmental conditions across the Antarctic Polar Front, including sea ice extent, sea surface temperature, and the input of eolian dust. The iron fertilization experiments show valve area to be positively correlated with iron concentrations in ambient waters, which suggests the possibility of a causal relation between valve size of Fragilariopsis kerguelensis and ambient surface water iron concentration. Larger valves are usually found during glacial times and thus seem to be related to lower sea surface temperature and wider sea ice coverage. Moreover, our results indicate that there usually is a strong correlation between larger valve size and increased input of eolian dust to the Southern Ocean. However, this correlation, obvious for the fertilization experiments and for glacial Terminations I, II, III, and V, does not seem to be valid for Termination VI, where size appears to be inversely correlated to dust input.
Resumo:
In the South Atlantic and adjoining Southern Ocean the kaolinite/chlorite-ratio in Late Quaternary sediments are an alternative deep water proxy to benthic foraminiferal proxies and carbonate preservation indices that is even suitable in regions with poor carbonate preservation. This paper shows the relationship between modern abyssal circulation and the kaolinite/chloriteratio and presents reconstructions of deep and bottom water advection based on the kaolinite/ chlorite proxy. We also discuss the limitations and future perspectives of the kaolinite/chlorite proxy. Latitudinal and water depth-related patterns of the kaolinite/chlorite-ratio in surface sediments correspond to the modern deep and bottom water mass distribution. Kaolinite originates from lowlatitudes and traces North Atlantic Deep Water (northern-source deep water) advection to the south. Chlorite from the southern high-latitudes is exported via northward advecting Antarctic Bottom Water and Circumpolar Deep Water (southern-source deep and bottom water). Deep-sea sedimentation in regions underlying the Antarctic Circumpolar Current was current-dominated throughout the Late Quaternary. Temporal variations of the kaolinite/chlorite-ratio in response to glacial-interglacial cycles reflect changing deep water mass configurations, suggesting a shallowing and northward retreat of northern-source deep water and accordingly wider expansion of southernsource deep and bottom water masses during glacial times relative to interglacial times. Submarine topography influenced the spatial and temporal patterns of deep water mass distribution.