175 resultados para A1-2


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 14C reservoir age of the surface ocean was determined for two Holocene periods (4908-4955 and 3008-3066 calendar (cal) B.P.) using U/Th-dated corals from Biscayne National Park, Florida, United States. We found that the average reservoir ages for these two time periods (294 ± 33 and 291 ± 27 years, respectively) were lower than the average value between A.D. 1600 and 1900 (390 ± 60 years) from corals. It appears that the surface ocean was closer to isotopic equilibrium with CO2 in the atmosphere during these two time periods than it was during recent times. Seasonal d18O measurements from the younger coral are similar to modern values, suggesting that mixing with open ocean waters was indeed occurring during this coral's lifetime. Likely explanations for the lower reservoir age include increased stratification of the surface ocean or increased D14C values of subsurface waters that mix into the surface. Our results imply that a more correct reservoir age correction for radiocarbon measurements of marine samples in this location from the time periods ~3040 and ~4930 cal years B.P. is ~292 ± 30 years, less than the canonical value of 404 ± 20 years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strontium/calcium (Sr/Ca) ratios in bulk and foraminiferal calcite have been used to constrain the history of Sr/Ca in the oceans and to evaluate calcite diagenetic alteration. However bulk Sr/Ca records also may be influenced by differences in Sr uptake and/or in the diagenetic susceptibility of different calcium carbonate sedimentary components. We present data on the sediment size fraction and calcium carbonate distribution in bulk samples, Sr/Ca in a range of sedimentary size components, and Sr/Ca in bulk sediments. Ocean Drilling Program samples from sites on Ontong Java Plateau and Ceara Rise (in the western equatorial Pacific and Atlantic, respectively) and from sites in the eastern equatorial Pacific were selected to represent progressive stages in the diagenetic pathway from the sea floor through a range of burial depths equivalent to sediment ages of ~5.6, ~9.4, and ~37.1 Ma. Samples were subdivided by size to produce a unique data set of size-specific Sr/Ca ratios. Fine fraction (<45 ?m) Sr/Ca ratios are higher than those of all corresponding coarse fractions, indicating that fine nannofossil-dominated calcite has a Sr partition coefficient 1.3-1.5 times greater than that of coarse foraminifera-dominated calcite. Thus, absolute values of bulk Sr/Ca in contemporaneous samples reflect, in part, the ratio of fine to coarse calcite sedimentary components. Sr/Ca values in fine and coarse components also behave differently in their response to pre-burial dissolution and to recrystallization at depth. Coarse size components are sensitive to bottom water carbonate ion undersaturation, and they lose original Sr/Ca differences among contemporary samples over not, vert, similar10 my. In contrast, fine components recrystallize faster in more deeply buried samples. Interpretation of the historical Sr/Ca record is complicated by post-depositional diagenetic artifacts, and thus our data do not provide clear evidence of specific temporal changes in oceanic Sr/Ca ratios over the past 10 million years. This paper represents the first systematic attempt to examine trends in calcite Sr/Ca as a function of sediment size fraction and age.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The technical details of drilling and coring at the Kirchrode I and II sites are presented. At these sites, a sequence of claystones and marlstones from an Albian shelf basin was recovered. Constraints on the ages of the sediments in the two boreholes are provided by the occurrence of the inoceramid bivalve Actinoceramus sulcatus, the first appearance of which is used to define the Middle/Upper Albian boundary and by observed facies changes that can be correlated to the established lithostratigraphy. The cores from the two boreholes provide a rather complete, 285-m-long sequence of the Upper Albian, with a 155.5-m-long overlap. Analysis of the tectonic structures showed considerable shortening in the Middle and Lower Albian part of the sequence due to normal faulting. Of the Upper Albian, only the lowermost part is affected by faults. The increase in sedimentation rates of terrigenous detritus and of marine biogenic carbonate, which occurs in the basal part of the C. auritus Subzone, is interpreted to reflect a regional change to a more humid climate and regional tectonic movements (uplift of the Rhenish Bohemian massif, subsidence of the Lower Saxony basin intensified locally by halokinetic movements). The further increase in marine productivity in the latest Albian may be related to upwelling of more nutrient-rich deep water along submarine relief in this shelf sea. Identification of Milankovitch cyclicity documented by the fluctuating CaCO3 contents of the sediments is used (i) to constrain the minimum time represented by the Upper Albian deposits, and (ii) to determine the duration of the sea level cycles (Cycle V: >=1.6 Ma, Cycle VI: >=2 Ma), and (iii) to establish the duration of the Late Albian ammonite subzones (e.g. Callihoplites auritus Subzone: 2.1 Ma). Average sedimentation rates determined from the identified 100-ka eccentricity cycles show a stepwise increase in sedimentation rates from 1-2 cm/1000 a in the Lower Albian dark claystones to 7-13 cm/1000 a in the late Late Albian. In addition to the general deepening trend through the Late Albian, two, nearly completely documented 3rd-order sea-level cycles in the Upper Albian of Kirchrode I were recognised, plus another one, cut short by faulting, at the base of the Upper Albian (documented in Kirchrode II). These global sea-level cycles were identified on the basis (a) of the sequence of the abundance maxima of selected benthos and plankton groups, (b) of trends in the fluctuations of the CaCO3 content, and (c) of the abundance of glauconite. The transgression periods in this Upper Albian deep shelf-basin are characterised by intensified circulation. This intensified circulation is found to have affected first the surface-near waters, resulting e.g. in an increase in the abundance of immigrant plankton and nekton species from the Tethys. At a later stage the deep water was affected, supporting then an increased population of suspension-feeding benthos, and causing condensation and erosion in the sediment at the sea floor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flux of bulk components, carbonate- and silicate-bearing skeleton organisms, and the d15N-isotopic signal were investigated on a 1-year time-series sediment trap deployed at the pelagic NU mooring site (Namibia Upwelling, ca. 29°S, 13°E) in the central Benguela System. The flux of bulk components mostly shows bimodal seasonality with major peaks in austral summer and winter, and moderate to low export in austral fall and spring. The calcium carbonate fraction dominates the export of particulates throughout the year, followed by lithogenic and biogenic opal. Planktonic foraminifera and coccolithophorids are major components of the carbonate fraction, while diatoms clearly dominate the biogenic opal fraction. Bulk d15N isotopic composition of particulate matter is positively correlated with the total mass flux during summer and fall, while negatively correlated during winter and spring. Seasonal changes in the intensity of the main oceanographic processes affecting the NU site are inferred from variations in bulk component flux, and in the flux and diversity patterns of individual species or group of species. Influence from the Namaqua (Hondeklip) upwelling cell through offshore migration of chlorophyll filaments is stronger in summer, while the winter flux maximum seems to reflect mainly in situ production, with less influence from the coastal and shelf upwelling areas. On a yearly basis, dominant microorganisms correspond well with the flora and fauna of tropical/subtropical waters, with minor contribution of near-shore organisms. The simultaneous occurrence of species with different ecological affinities mirrors the fact that the mooring site was located in a transitional region with large hydrographic variability over short-time intervals.