566 resultados para A. cf. cretaceous
Resumo:
During Ocean Drilling Program (ODP) Leg 149, five sites were drilled on the Iberia Abyssal Plain in the northeastern Atlantic Ocean. Both Mesozoic and Cenozoic sediments were recovered. Oligocene to Miocene sediments were cored at deepwater Sites 897, 898, 899, and 900. Except for a few intervals, occurrences of generally abundant and well-preserved calcareous nannofossils suggest that the deposition of the turbidite-type sediments occurred above the calcite compensation depth (CCD). One major unconformity in the middle late Miocene is present. Detailed quantitative analyses of calcareous nannofossils are used to determine the changes occurring among the nannoflora in relation to sea-level variation. A succession of 89 biohorizons from the early Oligocene to the late Miocene are defined by combining the biostratigraphic results of the four sites studied in the Iberia Abyssal Plain. One new genus and eight new species are described: Camuralithus, Camuralithus pelliculatus, Ericsonia detecta, Helicosphaera limasera, Sphenolithus akropodus, Sphenolithus aubryae, Sphenolithus cometa, Reticulofenestra circus, and Syracosphaera lamina. Two new variations and seven new combinations are also introduced.
Resumo:
Volcaniclastic rocks of Late Cretaceous age occur in four out of five sites (525, 527, 528, 529) drilled on the crest and the northwest flank of the Walvis Ridge during Leg 74. They are mostly interlayered with and overlie basement in the lowermost 10-100 m of the sedimentary section. Rocks from Holes 525A and 528 were studied megascopically and microscopically, by XRD, and XRF chemical analyses of whole-rock major and trace elements were undertaken. The dominant rock of Hole 528 volcaniclastics is a fine-grained (silt to fine sand), mostly matrix-bearing (partly matrix-rich) vitric "tuff," occurring as 5-110 cm thick, partly graded layers, some of which are distinctly bedded. Volcaniclastics of Hole 525A are generally richer in sanidine crystals. Most rocks contain some nonvolcanic clasts, chiefly foraminifers and lesser amounts of shallow-water fossil debris. Scoria shards, clasts of tachylite, and fine-grained basalts as well as chemical analyses suggest a basaltic to intermediate composition for most rocks of Hole 528, whereas volcaniclastics of Hole 525A are more silicic. The occurrence of tachylite and epiclastic, coarse-grained, basaltic clasts throughout the volcaniclastic sequence at Site 528 indicates shallow-water eruptions and perhaps even ocean island volcanism. The minor occurrence in Hole 528 of trachytic? pumice shards with phenocrysts of K-feldspar and the abundance of such shards in rocks from Hole 525A indicate Plinian eruptions characteristic of more mature stages of ocean island evolution. The sedimentary structures of volcaniclastic layers and their occurrence within deep sea calcareous oozes indicate a mass flow origin. Diagenetic alteration of the volcaniclastic rocks is pronounced, and four major stages of glass shard alteration are distinguished. Despite the effects of alteration and small-scale redistribution of elements and the admixture of nonvolcanic components, there were no drastic changes in the chemical composition of the rocks, except for pronounced increases in K and Rb and decreases in Ca and Fe. The basaltic volcaniclastic rocks very much resemble basement basalts in that they are moderately evolved tholeiites derived from an LIL-enriched mantle source with Zr/Nb ratios (Hole 528) of 5 to 6. This, in conjunction with the interbedding of volcaniclastic rocks and basement lavas, indicates contemporaneous seamount or island and basement volcanic activity involving magmas derived from similar sources.
Resumo:
A summary of calcareous nannofossil biostratigraphy performed for Late Jurassic (Kimmeridgian) to Early Cretaceous (Hauterivian) cores of Site 765 (Cores 123-765C-58R to -55R) and Site 261 (Cores 27-261-33 to -27), Argo Abyssal Plain, off northwestern Australia is presented. Precise age determinations were limited by variable preservation and the exclusion of a number of marker species due to provincialism. However, the presence of species, such as, Stephanolithion bigotii bigotii, Watznaueria manivitae, Tubodiscus verenae, and Cruciellipsis cuvillieri results in a reasonably good degree of biostratigraphic control. Biogeographic interpretation of the nannofossil data suggests that the Argo Basin occupied a position transitional between the Tethyan and Austral nannofloral realms. A cooler water regime is suggested by the absence of thermophyllic Tethyan forms, such as Nannoconus, and the presence of taxa that display bipolar distribution, such as Crucibiscutum salebrosum. Two new species, Zeugrhabdotus cooperi and Cyclagelosphaera argoensis, and one new combination, Haqius ellipticus are described.
Resumo:
Clusters of sponge spicules found in Quaternary deep-water sediments at Sites 685 and 688 off Peru represent single individuals of small sponges or fragments of larger sponges. The spicule assemblages constituting these clusters probably represent a few demosponge species of the subclass Tetractinomorpha and order Astrophorida, because triaenes and microscleric euasters, as well as abundant monaxons, are present. As proved by incorporated Neogene diatoms, these spicule clusters are allochthonous. The sponge individuals probably inhabited deeper neritic environments during late Neogene time.
Resumo:
The book is devoted to stratigraphy of Cretaceous deposits from high latitudes of the southern hemisphere (subantarctic part of the ocean), as well as to geological and climatic Cretaceous history of the area. Correlation with Cretaceous sediments from warm water regions is carried out. Description and photos of characteristic species of planktonic and benthic foraminifera and calcispherulides are given.
Resumo:
Calcareous nannofossils, pollen, and spores were examined on samples from Ocean Drilling Program Leg 178 Site 1095 on the continental rise and Sites 1097, 1100, and 1103 on the outer continental shelf of the western Antarctic Peninsula. Stratigraphically useful specimens of calcareous nannofossils occur in Site 1095 sediments assigned to Zones CN15, CN13b, and CN11. Calcareous nannofossils are rare but occur throughout the sedimentary sequences from seismic Units S1 to S3 on the continental shelf. Most of the calcareous nannofossils in Units S1 and S2 are composed of Cretaceous specimens that have been recycled by glacial processes. The occurrence of Dictyococcites in samples within Unit S3 upper Miocene sediments without any reworked specimens suggests those sediments are deposited in an open-ocean environment. These results are consistent with those from foraminifer and radiolarian studies. Pollen and spores including Nothofagidites, the genus for fossil pollen referred to as Nothofagus, are also observed in Unit S3 sediments. The sparse occurrence of pollen and spores, however, makes it difficult to assess the nature of the Antarctic terrestrial vegetation.
Resumo:
Die in den Ablagerungen des marinen Elster-Saale-Interglazials (= Holstein-See = Stör-Meer) gefundenen und als autochthon betrachteten Foraminiferen und Ostrakoden kommen alle noch rezent vor. In vielen Proben wurden daneben aus dem Tertiär und der Oberkreide aufgearbeitete Foraminiferen gefunden. In den Proben aus Muldsberg, Albersdorf und Esbjerg konnte eine gleichgerichtete Faunen-veränderung vom Liegenden zum Hangenden beobachtet werden. Die Formen der jeweils unteren Proben gehören subarktischen bis hochborealen Temperaturen, etwa vollmarinem Milieu und mindestens 30 m Wassertiefe an. Ins Hangende hinein wurde nach Foraminiferen und Ostrakoden das Meer flacher, wärmer und brackischer, bis es schließlich in den obersten Proben wattähnliche Verhältnisse mit wahrscheinlich etwas geringerer Temperatur als am heutigen südlichen Nordseerand erreichte. Diese Beobachtung stimmt überein mit den von GRAHLE (1936) an Mollusken gewonnenen Erkenntnissen und den Schlüssen, die andere Bearbeiter aus einzelnen Mikrofaunen zogen. Es wurde versucht, die Faunen der restlichen Aufschlüsse in das oben erwähnte Schema einzuordnen. Dies gelang nur in zwei Fällen nicht. In Oldenhütten ist das Versagen wahrscheinlich auf unentwirrte Lagerungsstörungen zurückzuführen, in der Austernbank Tarbek liegen abweichende fazielle Verhältnisse vor. Die restlichen Aufschlüsse zeigen, daß aus den vom Eis gestörten Sedimenten doch oft ein sinnvolles Bild rekonstruiert werden kann. Die im kälteren Teil der Holstein-See auftretende Foraminifere Elphidium subarcticum CUSHMAN scheint in den Absätzen des schleswig-holsteinischen Eem-Meeres zu fehlen.