199 resultados para 984


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcium carbonate and organic carbon concentrations are from measurements made on board the JOIDES Resolution during Leg 117 (Prell, Niitsuma, et al., 1989, doi:10.2973/odp.proc.ir.117.1989). Values are for samples immdiately adjacent to fabric samples, or for Site 723 within 25 cm of the fabric sample interval. Intervals for which carbon analyses were not performed are represented by values in parenthesis which are from the nearest interval of similar lithology. Organic carbon analyses were not performed for samples below 402 mbsf at Site 731. Analyses performed on similar sediments at Sites 722 and 731 indicate the organic carbon concentration is probably <0.20%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report geomagnetic directional paleosecular variation, relative paleointensity proxies and oxygen isotope data from the upper 88 m composite depth (mcd) at South Atlantic Ocean Drilling Program (ODP) Site 1089 (40°56.2?S, 9°53.64?E, 4620 m water depth). The age model is provided by high-resolution oxygen isotope stratigraphy, augmented by radiocarbon dates from the upper 8 mcd of nearby piston core RC11-83. Mean sedimentation rates at Site 1089 are in the range of 15 to 20 cm/kyr. Two intervals during the Brunhes Chron, at ?29.6 mcd (?190 ka) and at ?48 mcd (?335 ka), have component magnetization directions with positive (reverse polarity) inclination; however, the excursional directions are heavily overprinted by the postexcursional field. Magnetite is the dominant carrier of magnetic remanence, and occurs in the pseudosingle-domain (PSD) grain size. An additional higher-coercivity magnetic carrier, characterized by low unblocking temperatures (<350°C), is assumed to be authigenic pyrrhotite. A decrease in magnetization intensity down core is mirrored by a reduction in pore water sulfate, indicating diagenetic reduction of magnetite. Despite down-core changes in magnetic mineralogy, normalized intensity records from Site 1089 are comparable with high-resolution paleointensity records from the North Atlantic (e.g., ODP Sites 983 and 984). Sediment properties and sedimentation patterns within the Cape (Site 1089) and Iceland (Sites 983 and 984) Basins are distinctly different at both millennial and orbital timescales and therefore preclude lithologic variability from being the source of this correlation. Variations in normalized intensity from Site 1089 therefore appear to reflect changes in global-scale geomagnetic field intensity.