500 resultados para 20S-15N
Resumo:
Nitrogen fixation data from the cruise number MSM18/5 with research vessel "Maria S. Merian" from 22.08.-20.09.2011 (from Walvis Bay to Walvis Bay) in front of Angola and northern Namibia. Samples taken by CTD- rosette sampler from different depths and incubated in glass bottles (535 ml) at light intensities that resemble the in situ light intensities of the sampling depth after 15N2 gas was injected to the sample. After the incubation time of 6 hours, the complete bottle content was filtered onto a pre-combusted Whatman GF/F filter. Filters were frozen, transported to the institute on dry ice and measured in a mass spectrometer for Delta 15N. The principle of the method was described by Montoya et al. (1996) and calculation was done according to their spread sheet. From the data of the single depths, the nitrogen fixation per square meter within the upper 40 m of the water column was calculated. The methods are described in detail in a paper submitted by Wasmund et al. in 2014 to be printed in 2015. Some results are surprisingly below zero. This occurs if the Delta 15N of the blank is higher than the measurement after incubation. It indicates that no nitrogen fixation occurred. Due to natural variability, the variability of the nitrogen fixation data is high. In an overall estimate, also over several cruises, negative and positive values compensate more or less, suggesting that nitrogen fixation is insignificant in the waters in front of northern Namibia and southern Angola.
Resumo:
High molecular weight aliphatic hydrocarbons were extracted from sediments at two sites (741 and 742) drilled during Ocean Drilling Program Leg 119 in Prydz Bay, a major embayment on the continental shelf of East Antarctica. The distributions of n-alkanes and triterpenoid and steroid hydrocarbons suggest that the n-alkanes and steranes are mainly of terrestrial origin and that the hydrocarbons are immature to slightly mature in the Lower Cretaceous sediments and immature to mature in the Tertiary sediments. At Site 741, the Lower Cretaceous depositional sequence, which is generally characterized by immature hydrocarbons, is interrupted by sediment having more mature components, suggesting a change of source during part of Early Cretaceous time. At Site 742, the mature geochemical parameters of a Pliocene sample correlate with results reported elsewhere for Site 739. In all but one of the other Tertiary samples, the geochemical parameters indicate intermediate maturity. The Lower Cretaceous and Pliocene sediments average about 1.9% organic carbon, a value of interest from the point of view of potential sources of petroleum offshore from Antarctica.
Resumo:
The d15N of surface and down-core sediments spanning the last 20-200 kyr from the entire South China Sea (SCS) ranges only from ~3.0 to ~6.5 per mil, with no correlation with discernible paleoclimatic/oceanographic changes. Detailed profiles of the uppermost sediment column, including fluff samples, indicate a minor diagenetic overprint of 0.3-1.2 per mil at the sediment-water interface. The absence of any correlation with reconstructed (glacial-interglacial) changes in primary production, terrigenous input, and/or sea level related basin configuration is attributed to a complete consumption of nitrate during primary production in this marginal basin during at least the last 140,000 years. This, in turn, implies that the d15N of the nitrate used during primary production remained approximately constant during the last climatic cycle. The proposed scenario infers an unchanged nitrogen isotopic composition of the western Pacific subsurface nitrate between glacial and interglacial stages as well as during terminations and thus constrains proposed changes in the oceanic N inventory.
Resumo:
Oxidized intervals of five organic-rich Madeira Abyssal Plain (MAP) turbidites deposited during the Miocene, Pliocene, and Pleistocene all displayed comparable major loss of total organic carbon (TOC) (84 ± 3.1%) accompanied by a negative isotopic (d13C) shift ranging from -0.3 to -2.9 per mil. Major but significantly lower loss of total nitrogen (Ntot, 61 ± 7.1%) also occurred, leading to a decrease in TOC relative to Ntot (C/Ntot) and a +1.3 to 2.7 per mil Ntot isotopic (d15N) shift. Compound specific isotopic measurements on plant wax n-alkanes indicate the terrestrial organic component in the unoxidized deposits is 13C-enriched owing to significant C4 contribution. Selective preservation of terrestrial relative to marine organic carbon could account for the d13C behavior of TOC upon oxidation but only if a 13C-depleted component of the bulk terrestrial signal is selectively preserved in the process. Although the C/Ntot decrease and positive d15N shift seems inconsistent with selective terrestrial organic preservation, results from analysis of a Modern eolian dust sample collected in the vicinity indicate these observations are compatible. Regardless of the specific explanation for these isotopic observations, however, our findings provide evidence that paleoreconstruction of properties such as pCO2 using the d13C of TOC is a goal fraught with uncertainty whether or not the marine sedimentary record considered is 'contaminated' with significant terrestrial input. Nonetheless, despite major and selective loss of both marine and terrestrial components as a consequence of postdepositional oxidation, intensive organic geochemical proxies such as the alkenone unsaturation index, UK'37, appear resistant to change and thereby retain their paleoceanographic promise.
Resumo:
The spatial variability of biomass and stable isotopes in plankton size fractions in the upper 200 m was studied in a high spatial resolution transect along 24°N from Canary Islands to Florida (January - March 2011) during Leg 8 of the Malaspina-2010 expedition (http://www.expedicionmalaspina.es) to determine nitrogen and carbon sources. Plankton samples were collected by vertical tows of a microplankton net (40 mm mesh size) and a mesoplankton net (200 mm mesh size) through the upper 200 m of the water column. Sampling was between 10:00 and 16:00 h GMT. Plankton was separated into five size fractions (40 - 200, 200 - 500, 500 - 1000, 1000 - 2000 and > 2000 mm) by gentle filtration of the samples by a graded series of nylon sieves (2000, 1000, 500, 200 and 40 mm). Large gelatinous organisms were removed before filtration. Aliquots for each size fraction were collected on pre-weighed glass-fibre filters, dried (60°C, 48 h) and stored in a desiccator before determination of biomass (dry weight), carbon and nitrogen content and natural abundance of stable carbon and nitrogen isotopes ashore. Vertical advection of waters predominated in lateral zones while the central Atlantic (30-70°W) was characterized by a strong stratification and oligotrophic surface waters. Plankton biomass was low in the central zone and high in both eastern and western sides, with most of the variability due to either large (>2000 µm) and small plankton (<500 µm). Carbon isotopes reflected mainly the advection the deep water in lateral zones. Stable nitrogen isotopes showed a nearly symmetrical spatial distribution in all fractions, with the lowest values (delta15N <1per mill) in the central zone, and were inversely correlated to carbon stable isotopes (delta13C) and to the abundance of the nitrogen-fixer Trichodesmium. Diazotrophy was estimated to account for >50% of organic nitrogen in the central zone, and even >30% in eastern and western zones. The impact of diazotrophy increased with the size of the organisms, supporting the wide participation of all trophic levels in the processing of recently fixed nitrogen. These results indicate that atmospheric sources of carbon and nitrogen prevail over deep water sources in the subtropical North Atlantic and that the zone influenced by diazotrophy is much larger than reported in previous studies.
Resumo:
To study inorganic nitrogen uptake rates by microplankton in the Black Sea the first 15N-experiments were carried out in August-September 1990 and in November 1991. In surface waters nitrate uptake rates varied from 5.7 to 28.5 nM/l/h in summer and from 1.9 to 7.8 nM/l/h in autumn. In both seasons maximal and minimal rates were observed in frontal zones of shelf/slope areas and in open waters, respectively. In summer average nitrate uptake rate per unit of particulate organic nitrogen was 0.0037 1/h for all stations. In autumn it varied from 0.0007 1/h in the central part of the sea to 0.0033 1/h in the slope near the southeastern Crimean coast. In autumn ammonium uptake rate varied from 7.1 to 22.2 nM/l/h and from 0.0025 to 0.00094 1/h. Ammonium uptake correlated linearly with nitrate uptake, with new production being 22-36% of total summary nitrate and ammonium uptake. There was a linear correlation between nitrogen uptake and chlorophyll a concentrations in the Black Sea. In the water column in autumn both nitrate and ammonium uptake decreased as chlorophyll a concentration diminishes with depth.
Resumo:
The evolution of environmental changes during the last decades and the impact on the living biomass in the western part of Amvrakikos Gulf was investigated using abundances and species distributions of benthic foraminifera and lipid biomarker concentrations. These proxies indicated that the gulf has markedly changed due to eutrophication. Eutrophication has led to a higher productivity, a higher bacterial biomass, shifts towards opportunistic and tolerant benthic foraminifera species (e.g. Bulimina elongata, Nonionella turgida, Textularia agglutinans, Ammonia tepida) and a lower benthic species density. Close to the Preveza Strait (connection between the gulf and the Ionian Sea), the benthic assemblages were more diversified under more oxygenated conditions. Sea grass meadows largely contributed to the organic matter at this sampling site. The occurrence of isorenieratane, chlorobactane and lycopane supported by oxygen monitoring data indicated that anoxic (and partly euxinic) conditions prevailed seasonally throughout the western part of the gulf with more severe oxygen depletion towards the east. Increased surface water temperatures have led to a higher stratification, which reduced oxygen resupply to bottom waters. Altogether, these developments led to mass mortality events and ecosystem decline in Amvrakikos Gulf.
Resumo:
The isotopic composition of nitrogen in pore water ammonium and in sedimentary organic matter (Norg) was measured at Sites 1234 and 1235 in order to evaluate the impact of long-term (>100 k.y.) diagenesis on d15N of preserved organic matter. At both sites, the average d15N of pore water ammonium and Norg are within 0.2 per mil to 0.4 per mil. The small difference is less than the analytical uncertainty, indicating that no significant isotopic fractionation is associated with decomposition of organic matter in these sediments. A mass balance for nitrogen was also computed, indicating that ~20% of the organic matter flux buried below 1.45 meters composite depth (mcd) is degraded between this depth and 40 mcd (Site 1235) to 60 mcd (Site 1234) depth. Two factors determine the absence of isotopic fractionation in these sediments: 1. A high degree of organic matter preservation due to rapid sediment accumulation rates at both sites. 2. The dominance of a marine component in the sedimentary organic matter (with only a small fraction contributed by a terrestrial component).