658 resultados para 120-748
Resumo:
The biostratigraphic distribution and abundance of Eocene to Pleistocene silicoflagellates is documented from Ocean Drilling Program Leg 120 Holes 747A, 748A, 748B, 749B, and 751A on the Central Kerguelen Plateau. Well-preserved silicoflagellates are reported here from the middle Eocene Dictyocha grandis Zone to the Pleistocene Distephanus speculum speculum Zone. Assemblage diversity and abundance is variable, with many intervals either barren of silicoflagellates or containing only limited numbers.
Resumo:
With the exception of a brief (2 m.y.) late Miocene-early Pliocene hiatus, an essentially complete Neogene record was recovered on the Kerguelen Plateau in a calcareous biofacies. The stratigraphic distribution of about 30 taxa of Neogene planktonic foraminifers recovered at Sites 747, 748,and 751 (Central and Southern Kerguelen plateaus; approximately 54°-58°S) is recorded. Faunas are characterized by low diversity and high dominance and exhibit a gradual decline in species numbers (reflecting a concomitant increase in biosiliceous forms, particularly diatoms) from about 10 in the early Miocene to 5-8 in the middle Miocene, 3-4 in the late Miocene, to essentially a lone (Neogloboquadrina pachyderma) form in the Pliocene-Pleistocene. A provisional sevenfold biostratigraphic zonation has been formulated that, together with the recovery of a representative Neogene magnetostratigraphic record, may ultimately lead to a correlation with low-latitude magnetobiostratigraphies. The initial appearance of Neogloboquadrina pachyderma is associated with magnetic polarity Chron (MPC) 4 (~7 Ma) and MPC 4A (>8 Ma) at Sites 747 and 751, respectively.
Resumo:
We correlated Miocene d18O increases at Ocean Drilling Program Site 747 with d18O increases previously identified at North Atlantic Deep Sea Drilling Project Sites 563 and 608. The d18O increases have been directly tied to the Geomagnetic Polarity Time Scale (GPTS) at Site 563 and 608, and thus our correlations at Site 747 provide a second-order correlation to the GPTS. Comparison of the oxygen isotope record at Site 747 with records at Sites 563 and 608 indicates that three as-yet-undescribed global Miocene d18O increases may be recognized and used to define stable isotope zones. The d18O maxima associated with the bases of Zones Mila, Milb, and Mi7 have magnetochronologic age estimates of 21.8, 18.3, and 8.5 Ma, respectively. The correlation of a d18O maximum at 70 mbsf at Site 747 to the base of Miocene isotope Zone Mi3 (13.6 Ma) provides a revised interpretation of four middle Miocene normal polarity intervals observed between 77 and 63 mbsf at Hole 747A. Oxygen isotope stratigraphy indicates that the reversed polarity interval at 70 mbsf, initially interpreted as Chronozone C5AAr, should be C5ABr. Instead of a concatenated Chronozone C5AD-C5AC with distinct Chronozones C5AB, C5AA, and C5A (as in the preliminary interpretation), d18O stratigraphy suggests that these normal polarity intervals are Chronozones C5AD, C5AC, and C5AB, whereas Chronozones C5AA-C5A are concatenated. This interpretation is supported by the d13C correlations. The upper Miocene magnetostratigraphic record at Hole 747A is ambiguous. Two upper Miocene d18O events at Site 747 can be correlated to the oxygen isotope records at Site 563 and 608 using the magnetostratigraphy derived at Hole 747B. Our chronostratigraphic revisions highlight the importance of stable isotope stratigraphy in attaining an integrated stratigraphic framework for the Miocene.