162 resultados para tropical marine fishery
Resumo:
Benthic foraminiferal oxygen isotope ratios from two sediment cores recovered at 426 and 1299 m water depth in the eastern and western tropical Atlantic show that a slowdown of the thermohaline circulation (THC) during Heinrich event H1 and the Younger Dryas was accompanied by rapid and intense warming of intermediate depth waters. Millennial-scale covariations of low paleosalinities in the subpolar North Atlantic with decreased benthic oxygen isotope ratios in the eastern tropical Atlantic throughout the past 10,000 years suggest that THC weakening might be related to middepth warming during the Holocene period as well. Climate model experiments simulating a strong reduction of the THC in the Atlantic Ocean under present-day and glacial conditions reveal that the increase of temperature in the middepth tropical and South Atlantic is a common feature for both climatic states, caused by a reduced ventilation of cold intermediate and deep waters in conjunction with downward mixing of heat from the thermocline. From the similarity of the paleoclimatic records with the model simulations, we infer that the characteristic pattern of temperature change in the Atlantic Ocean related to weakened thermohaline circulation can serve as an indicator of present-day and future THC slowdown.
Resumo:
Planktonic foraminiferal census counts are used to construct high-resolution sea surface temperature (SST) and subsurface (thermocline) temperature records at a core site in the Tobago Basin, Lesser Antilles. The record is used to document climatic variability at this tropical site in comparison to middle- and high-latitude sites and to test current concepts of cross-equatorial heat transports as a major player in interhemispheric climate variability. Temperatures are estimated using transfer function and modern analog techniques. Glacial - maximum cooling of 2.5°-3°C is indicated; maximum cooling by 4°C is inferred for isotope stage 3. The SST record displays millennial-scale variability with temperature jumps of up to 3°C and closely tracks the structure of ice-core Dansgaard/Oeschger cycles. SST variations in part of the record run opposite to the SST evolution at high northern latitude sites, pointing to thermohaline circulation and marine heat transport as an important factor driving SST in the tropical and high-latitude Atlantic, both on orbital and suborbital timescales.
Resumo:
Community metabolism was investigated using a Lagrangian flow respirometry technique on 2 reef flats at Moorea (French Polynesia) during austral winter and Yonge Reef (Great Barrier Reef) during austral summer. The data were used to estimate related air-sea CO2 disequilibrium. A sine function did not satisfactorily model the diel light curves and overestimated the metabolic parameters. The ranges of community gross primary production and respiration (Pg and R; 9 to 15 g C m-2 d-1) were within the range previously reported for reef flats, and community net calcification (G; 19 to 25 g CaCO3 m-2 d-1) was higher than the 'standard' range. The molar ratio of organic to inorganic carbon uptake was 6:1 for both sites. The reef flat at Moorea displayed a higher rate of organic production and a lower rate of calcification compared to previous measurements carried out during austral summer. The approximate uncertainty of the daily metabolic parameters was estimated using a procedure based on a Monte Carlo simulation. The standard errors of Pg,R and Pg/R expressed as a percentage of the mean are lower than 3% but are comparatively larger for E, the excess production (6 to 78%). The daily air-sea CO2 flux (FCO2) was positive throughout the field experiments, indicating that the reef flats at Moorea and Yonge Reef released CO2 to the atmosphere at the time of measurement. FCO2 decreased as a function of increasing daily irradiance.
Resumo:
A transect of marine surface sediment samples from 1° N to 28° S off southwest Africa was analysed to verify the application of hydrogen isotope compositions of terrestrial plant-wax n-alkanes preserved in ocean sediments as a proxy for continental hydrological conditions. Conditions on the adjacent continent range from humid evergreen forests to deciduous forests, wood- and shrub land and further to arid grasslands and deserts. The hydrogen isotope values for the dominant n-alkane homologues (C29, C31 and C33) vary from -123 per mil to -141 per mil VSMOW and correlate with the modelled hydrogen isotope composition of mean annual and growing season precipitation of postulated continental source areas (r up to 0.8, p < 0.01). The apparent hydrogen isotope fractionation between alkanes and mean annual precipitation is remarkably uniform (-109 per mil on average, Sigma <= 5 per mil, n = 27). Potentially, effects of aridity on the apparent hydrogen isotope fractionation are concealed by the contribution of different plants (C3 dicotyledons vs C4 grasses). Thus, isotope ratios of leaf wax n-alkanes preserved in ocean margin sediments in these and similar tropical regions may be directly converted to dD ratios of ancient precipitation by employing a constant hydrogen isotope fractionation.
Resumo:
Community metabolism was investigated using a Lagrangian flow respirometry technique on 2 reef flats at Moorea (French Polynesia) during austral winter and Yonge Reef (Great Barrier Reef) during austral summer. The data were used to estimate related air-sea CO2 disequilibrium. A sine function did not satisfactorily model the diel light curves and overestimated the metabolic parameters. The ranges of community gross primary production and respiration (Pg and R; 9 to 15 g C m-2 d-1) were within the range previously reported for reef flats, and community net calcification (G; 19 to 25 g CaCO3 m-2 d-1) was higher than the 'standard' range. The molar ratio of organic to inorganic carbon uptake was 6:1 for both sites. The reef flat at Moorea displayed a higher rate of organic production and a lower rate of calcification compared to previous measurements carried out during austral summer. The approximate uncertainty of the daily metabolic parameters was estimated using a procedure based on a Monte Carlo simulation. The standard errors of Pg,R and Pg/R expressed as a percentage of the mean are lower than 3% but are comparatively larger for E, the excess production (6 to 78%). The daily air-sea CO2 flux (FCO2) was positive throughout the field experiments, indicating that the reef flats at Moorea and Yonge Reef released CO2 to the atmosphere at the time of measurement. FCO2 decreased as a function of increasing daily irradiance.
Resumo:
Changes in El Niño-Southern Oscillation (ENSO) variability are difficult to extract from paleoceanographic reconstructions because they are superimposed on changes in seasonal variability that modulate the first-order climate signal. Here we address this problem by reconstructing thermocline structure from a marine sediment core retrieved from the eastern equatorial Pacific. At the core location, changes in hydrologic parameters within the thermocline are linked to ENSO activity, with a reduced influence of seasonal variability compared to surface waters. We performed repeated isotopic analyses (d18O) on single specimens of the thermocline-dwelling planktonic foraminifera Neogloboquadrina dutertrei at several targeted time periods over the last 50 ka to extract the total thermocline variance, a parameter supposed to reveal changes in ENSO. No fundamental changes in amplitude and frequency of the events were detected despite differences in climatic background. However, our data suggest that long-term variations in the thermocline variability occurred over the last 50 ka, with the highest and lowest ENSO activities occurring during the last glacial period and the Last Glacial Maximum, respectively.
Resumo:
Palynological data of the marine core M 16415-2 show latitudinal shifts of the northern fringe of the tropical rain forest in north-west Africa during the last 700 ka. Savanna and dry open forest expanded southwards and tropical rain forest expanded northwards during dry and humid periods, respectively. Until 220 ka B.P., the tropical rain forest probably kept its zonal character in West Africa during glacials and interglacials. It is only during the last two glacial periods that the rain forest possibly fragmented into refugia. Throughout the Brunhes chron, pollen and spore transport was mainly by trade winds.
Resumo:
This paper gives a modern circumscription of Tropical/Subtropical diatoms regarding their relationship with sea-surface temperatures (SST) and sea ice cover. Diatoms from 228 core-top sediment samples collected from the Southern Ocean were studied to determine the geographic distribution of eight major diatom species/taxa preserved in surface sediments generally located north of the Subantarctic Front. The comparison of the relative contribution of diatom species with modern February SST and sea-ice cover reveals species-specific sedimentary distributions regulated both by water temperatures and sea ice conditions. Although selective preservation might have played some role, their presence in surface and downcore sediments from the Southern Ocean are reliable indicators of high SST and poleward transport of waters from the Tropical/Subtropical Atlantic. Our work supports the use of diatom remains to reconstruct past variations of these environmental parameters via qualitative and transfer function approaches.
Resumo:
Inorganic nitrogen depletion restricts productivity in much of the low-latitude oceans, generating a selective advantage for diazotrophic organisms capable of fixing atmospheric dinitrogen (N2). However, the abundance and activity of diazotrophs can in turn be controlled by the availability of other potentially limiting nutrients, including phosphorus (P) and iron (Fe). Here we present high-resolution data (~0.3°) for dissolved iron, aluminum, and inorganic phosphorus that confirm the existence of a sharp north-south biogeochemical boundary in the surface nutrient concentrations of the (sub)tropical Atlantic Ocean. Combining satellite-based precipitation data with results from a previous study, we here demonstrate that wet deposition in the region of the intertropical convergence zone acts as the major dissolved iron source to surface waters. Moreover, corresponding observations of N2 fixation and the distribution of diazotrophic Trichodesmium spp. indicate that movement in the region of elevated dissolved iron as a result of the seasonal migration of the intertropical convergence zone drives a shift in the latitudinal distribution of diazotrophy and corresponding dissolved inorganic phosphorus depletion. These conclusions are consistent with the results of an idealized numerical model of the system. The boundary between the distinct biogeochemical systems of the (sub)tropical Atlantic thus appears to be defined by the diazotrophic response to spatial-temporal variability in external Fe inputs. Consequently, in addition to demonstrating a unique seasonal cycle forced by atmospheric nutrient inputs, we suggest that the underlying biogeochemical mechanisms would likely characterize the response of oligotrophic systems to altered environmental forcing over longer timescales.
Resumo:
The occurrence of mesoscale eddies that develop suboxic environments at shallow depth (about 40-100 m) has recently been reported for the eastern tropical North Atlantic (ETNA). Their hydrographic structure suggests that the water mass inside the eddy is well isolated from ambient waters supporting the development of severe near-surface oxygen deficits. So far, hydrographic and biogeochemical characterization of these eddies was limited to a few autonomous surveys, with the use of moorings, under water gliders and profiling floats. In this study we present results from the first dedicated biogeochemical survey of one of these eddies conducted in March 2014 near the Cape Verde Ocean Observatory (CVOO). During the survey the eddy core showed oxygen concentrations as low as 5 µmol kg-1 with a pH of around 7.6 at approximately 100 m depth. Correspondingly, the aragonite saturation level dropped to 1 at the same depth, thereby creating unfavorable conditions for calcifying organisms. To our knowledge, such enhanced acidity within near-surface waters has never been reported before for the open Atlantic Ocean. Vertical distributions of particulate organic matter and dissolved organic matter (POM and DOM), generally showed elevated concentrations in the surface mixed layer (0-70 m), with DOM also accumulating beneath the oxygen minimum. With the use of reference data from the upwelling region where these eddies are formed, the oxygen utilization rate was calculated by determining oxygen consumption through the remineralization of organic matter. Inside the core, we found these rates were almost 1 order of magnitude higher (apparent oxygen utilization rate (aOUR); 0.26 µmol kg-1 day-1) than typical values for the open North Atlantic. Computed downward fluxes for particulate organic carbon (POC), were around 0.19 to 0.23 g C m-2 day-1 at 100 m depth, clearly exceeding fluxes typical for an oligotrophic open-ocean setting. The observations support the view that the oxygen-depleted eddies can be viewed as isolated, westwards propagating upwelling systems of their own, thereby represent re-occurring alien biogeochemical environments in the ETNA.
Resumo:
Hominid evolution in the late Miocene has long been hypothesized to be linked to the retreat of the tropical rainforest in Africa. One cause for the climatic and vegetation change often considered was uplift of Africa, but also uplift of the Himalaya and the Tibetan Plateau was suggested to have impacted rainfall distribution over Africa. Recent proxy data suggest that in East Africa open grassland habitats were available to the common ancestors of hominins and apes long before their divergence and do not find evidence for a closed rainforest in the late Miocene. We used the coupled global general circulation model CCSM3 including an interactively coupled dynamic vegetation module to investigate the impact of topography on African hydro-climate and vegetation. We performed sensitivity experiments altering elevations of the Himalaya and the Tibetan Plateau as well as of East and Southern Africa. The simulations confirm the dominant impact of African topography for climate and vegetation development of the African tropics. Only a weak influence of prescribed Asian uplift on African climate could be detected. The model simulations show that rainforest coverage of Central Africa is strongly determined by the presence of elevated African topography. In East Africa, despite wetter conditions with lowered African topography, the conditions were not favorable enough to maintain a closed rainforest. A discussion of the results with respect to other model studies indicates a minor importance of vegetation-atmosphere or ocean-atmosphere feedbacks and a large dependence of the simulated vegetation response on the land surface/vegetation model.
Resumo:
Particle fluxes at the Cape Verde Ocean Observatory (CVOO) in the eastern tropical North Atlantic for the period December 2009 until May 2011 are discussed based on bathypelagic sediment trap time-series data collected at 1290 and 3439 m water depth. The typically oligotrophic particle flux pattern with weak seasonality is modified by the appearance of a highly productive and low oxygen (minimum concentration below 2 µmol kg**-1 at 40 m depth) anticyclonic modewater eddy (ACME) in winter 2010. The eddy passage was accompanied by unusually high mass fluxes of up to 151 mg m**-2 d**-1, lasting from December 2009 to May 2010. Distinct biogenic silica (BSi) and organic carbon flux peaks of ~15 and 13.3 mg m**-2 d**-1, respectively, were observed in February-March 2010 when the eddy approached the CVOO. The flux of the lithogenic component, mostly mineral dust, was well correlated with that of organic carbon, in particular in the deep trap samples, suggesting a tight coupling. The lithogenic ballasting obviously resulted in high particle settling rates and, thus, a fast transfer of epi-/meso-pelagic signatures to the bathypelagic traps. We suspect that the two- to three-fold increase in particle fluxes with depth as well as the tight coupling of mineral dust and organic carbon in the deep trap samples might be explained by particle focusing processes within the deeper part of the eddy. Molar C : N ratios of organic matter during the ACME passage were around 18 and 25 for the upper and lower trap samples, respectively. This suggests that some productivity under nutrient (nitrate) limitation occurred in the euphotic zone of the eddy in the beginning of 2010 or that a local nitrogen recycling took place. The d15N record showed a decrease from 5.21 to 3.11 per mil from January to March 2010, while the organic carbon and nitrogen fluxes increased. The causes of enhanced sedimentation from the eddy in February/March 2010 remain elusive, but nutrient depletion and/or an increased availability of dust as a ballast mineral for organic-rich aggregates might have contributed. Rapid remineralisation of sinking organic-rich particles could have contributed to oxygen depletion at shallow depth. Although the eddy formed in the West African coastal area in summer 2009, no indications of coastal flux signatures (e.g. from diatoms) were found in the sediment trap samples, confirming the assumption that the suboxia developed within the eddy en route. However, we could not detect biomarkers indicative of the presence of anammox (anaerobic ammonia oxidation) bacteria or green sulfur bacteria thriving in photic zone suboxia/hypoxia, i.e. ladderane fatty acids and isorenieratene derivatives, respectively. This could indicate that suboxic conditions in the eddy had recently developed and/or the respective bacterial stocks had not yet reached detection thresholds. Another explanation is that the fast-sinking organic-rich particles produced in the surface layer did not interact with bacteria from the suboxic zone below. Carbonate fluxes dropped from -52 to 21.4 mg m**-2 d**-1 from January to February 2010, respectively, mainly due to reduced contribution of shallow-dwelling planktonic foraminifera and pteropods. The deep-dwelling foraminifera Globorotalia menardii, however, showed a major flux peak in February 2010, most probably due to the suboxia/hypoxia. The low oxygen conditions forced at least some zooplankton to reduce diel vertical migration. Reduced "flux feeding" by zooplankton in the epipelagic could have contributed to the enhanced fluxes of organic materials to the bathypelagic traps during the eddy passage. Further studies are required on eddy-induced particle production and preservation processes and particle focusing.