506 resultados para the South China Sea
Resumo:
We carried out short term pCO2/pH perturbation experiments in the coastal waters of the South China Sea to evaluate the combined effects of seawater acidification (low pH/high pCO2) and solar UV radiation (UVR, 280-400 nm) on photosynthetic carbon fixation of phytoplankton assemblages. Under photosynthetically active radiation (PAR) alone treatments, reduced pCO2 (190 ppmv) with increased pH resulted in a significant decrease in the photosynthetic carbon fixation rate (about 23%), while enriched pCO2 (700 ppmv) with lowered pH had no significant effect on the photosynthetic performance compared to the ambient level. The apparent photosynthetic efficiency decreased under the reduced pCO2 level, probably due to C-limitation as well as energy being diverged for up-regulation of carbon concentrating mechanisms (CCMs). In the presence of UVR, both UV-A and UV-B caused photosynthetic inhibition, though UV-A appeared to enhance the photosynthetic efficiency under lower PAR levels. UV-B caused less inhibition of photosynthesis under the reduced pCO2 level, probably because of its contribution to the inorganic carbon (Ci)-acquisition processes. Under the seawater acidification conditions (enriched pCO2), both UV-A and UV-B reduced the photosynthetic carbon fixation to higher extents compared to the ambient pCO2 conditions. We conclude that solar UV and seawater acidification could synergistically inhibit photosynthesis.
Resumo:
A high-resolution planktonic foraminifer record from a core recovered from the South China Sea (SCS) (Sonne 17938-2: 19°47.2'N, 117° 32.3E; 2840 m; Delta t c. 250-1000 years) shows rapid millennial-scale changes in the western Pacific marginal sea climate during the last 30,000 years. The SCS is the largest western Pacific marginal sea off the southeast Asian continent, the area today dominated by seasonal monsoon changes. Quantitative analyses of planktonic foraminifer faunal abundance data frorn the core indicate large downcore variations in the relative abundances of the dominant taxa since about 30,000 years ago in the isotope stage 3. Further analyses indicate that the abundance of G. inflata, a good indicator species for cold SST (~13°-19°C) and deep MLD (~100-125 m) waters shows abrupt shifts. During stages 2 and 3, the abundance record of G. infiata tends to be punctuated by quasi-periodie short intervals (~2000-3000 yrs) where its abundance reaches 15% or greater, superimposed on generally low (5-10%) background values. This pattern suggests an instability of surface ocean conditions of the SCS during the past 30,000 years. The abrupt abundance changes of G. infiata correlate well with similar climatic changes observed from a GISP2 ice core 8180, and North Atlantic core DSDP 609 N. pachyderma (s.) and lithic grain abundances during 'Heinrich evcnts'. These results suggest that the millennial-scale variability of climate is not peculiar to the Atlantic region. Apparently, the rapid SCS climatic changes during Heinrich events are driven by effective mechanisms, of particularly the effects of shifts in the latitudinal position of the Siberia High Pressure System.
Resumo:
Sedimentological, geochemical and paleomagnetic records were employed to reconstruct the history of East Asian Monsoon variability in the South China Sea (SCS) on orbital- and millennial-to-sub-decadal time scales. A detailed magnetostratigraphy for the southern central SCS was established as well as a stable isotope stratigraphy for ODP Site 1144 for the last 1.2 million years in the northern South China Sea. Furthermore a volcanic tephra layer from the southern central SCS could be identified as the Youngest Toba Ash, which thus re-presents an important age marker and was used to reconstruct paleo wind directions during the eruption 74 ka. Special attention was paid to the high- and ultrahigh-frequency variability in the last glacial-interglacial cycle and the Holocene, and to a precise age control of climate changes in general.
Resumo:
Since the 1970s, Ocean Drilling Program (ODP) and Deep Sea Drilling Program (DSDP) studies have documented high accumulations of biogenic silica and carbonate in the late Miocene-early Pliocene Indian-Pacific Ocean. This high biogenic productivity event, or the "Biogenic Bloom Event," has been dated from 9.0 to 3.5 Ma (Leinen, 1979, doi:10.1130/0016-7606(1979)90<801:BSAITC>2.0.CO;2; Theyer et al., 1985, doi:10.2973/dsdp.proc.85.133.1985; Farrell et al., 1995, doi:10.2973/odp.proc.sr.138.143.1995; Dickens and Owen, 1996, doi:10.1016/0377-8398(95)00054-2, 1999, doi:10.1016/S0025-3227(99)00057-2; Dickens and Barron, 1997, doi:10.1016/S0377-8398(97)00003-0; Berger et al., 1993, doi:10.2973/odp.proc.sr.130.051.1993). It is unknown, however, whether the Biogenic Bloom Event existed in the South China Sea (SCS). High-quality Cenozoic sediment cores taken from the SCS during ODP Leg 184 provide an opportunity to investigate this question. The purpose of this study is to trace and illustrate the change in biogenic productivity in the southern SCS since the late Miocene and the Biogenic Bloom Event in terms of the content and accumulation rate of opal and carbonate at Site 1143.
Resumo:
Bottom-simulating reflectors were observed beneath the southeastern slope of the Dongsha Islands in the South China Sea, raising the potential for the presence of gas hydrate in the area. We have analyzed the chemical and isotopic compositions of interstitial water, headspace gas, and authigenic siderite concretions from Site 1146. Geochemical anomalies, including a slight decrease of chlorine concentration in interstitial water, substantial increase of methane concentration in headspace gas, and 18O enrichment in the authigenic siderite concretion below 400 meters below seafloor are probably caused by the decomposition of gas hydrate. The low-chlorine pore fluids contain higher molecular-weight hydrocarbons and probably migrate to Site 1146 along faults or bedded planes.
Resumo:
The 853 m thick sediment sequence recovered at ODP Site 1148 provides an unprecedented record of tectonic and paleoceanographic evolution in the South China Sea over the past 33 Ma. Litho-, bio-, and chemo-stratigraphic studies helped identify six periods of changes marking the major steps of the South China Sea geohistory. Rapid deposition with sedimentation rates of 60 m/Ma or more characterized the early Oligocene rifting. Several unconformities from the slumped unit between 457 and 495 mcd together erased about 3 Ma late Oligocene record, providing solid evidence of tectonic transition from rifting/slow spreading to rapid spreading in the South China Sea. Slow sedimentation of ~20-30 m/Ma signifies stable seafloor spreading in the early Miocene. Dissolution may have affected the completeness of Miocene-Pleistocene succession with short-term hiatuses beyond current biostratigraphical resolution. Five major dissolution events, D-1 to D-5, characterize the stepwise development of deep water masses in close association to post-Oligocene South China Sea basin transformation. The concurrence of local and global dissolution events in the Miocene and Pliocene suggests climatic forcing as the main mechanism causing deep water circulation changes concomitantly in world oceans and in marginal seas. A return of high sedimentation rate of 60 m/Ma to the late Pliocene and Pleistocene South China Sea was caused by intensified down-slope transport due to frequent sea level fluctuations and exposure of a large shelf area during sea level low-stands. The six paleoceanographic stages, respectively corresponding to rifting (~33-28.5 Ma), changing spreading southward (28.5-23 Ma), stable spreading to end of spreading (23-15 Ma), post-spreading balance (15-9 Ma), further modification and monsoon influence (9-5 Ma), and glacial prevalence (5-0 Ma), had transformed the South China Sea from a series of deep grabens to a rapidly expanding open gulf and finally to a semi-enclosed marginal sea in the past 33 Ma.
Resumo:
Pleistocene stable carbon isotope (d13C) records from surface and deep dwelling foraminifera in all major ocean basins show two distinct long-term carbon isotope fluctuations since 1.00 Ma. The first started around 1.00 Ma and was characterised by a 0.35 per mil decrease in d13C values until 0.90 Ma, followed by an increase of 0.60 per mil lasting until 0.50 Ma. The subsequent fluctuation started with a 0.40 per mil decrease between 0.50 and 0.25 Ma, followed by an increase of 0.30 per mil between 0.25 and 0.10 Ma. Here, we evaluate existing evidence and various hypotheses for these global Pleistocene d13C fluctuations and present an interpretation, where the fluctuations most likely resulted from concomitant changes in the burial fluxes of organic and inorganic carbon due to ventilation changes and/or changes in the production and export ratio. Our model indicates that to satisfy the long-term 'stability' of the Pleistocene lysocline, the ratio between the amounts of change in the organic and inorganic carbon burial fluxes would have to be close to a 1:1 ratio, as deviations from this ratio would lead to sizable variations in the depth of the lysocline. It is then apparent that the mid-Pleistocene climate transition, which, apart from the glacial cycles, represents the most fundamental change in the Pleistocene climate, was likely not associated with a fundamental change in atmospheric pCO2. While recognising that high frequency glacial/interglacial cycles are associated with relatively large (100 ppmv) changes in pCO2, our model scenario (with burial changes close to a 1:1 ratio) produces a maximum long-term variability of only 20 ppmv over the fluctuation between 1.00 and 0.50 Ma.
Resumo:
A 30 m.y. stable isotopic record of marine-deposited black carbon from regional terrestrial biomass burning from the northern South China Sea reveals photosynthetic pathway evolution for terrestrial ecosystems in the late Cenozoic. This record indicates that C3 plants negatively adjusted their isotopic discrimination and C4 plants appeared gradually as a component of land vegetation in East Asia since the early Miocene, a long time before sudden C4 expansion occurred during the late Miocene to the Pliocene. The changes in terrestrial ecosystems with time can be reasonably related to the evolution of East Asian monsoons, which are thought to have been induced by several intricate mechanisms during the late Cenozoic and could contribute significantly to the post-Miocene marine carbonate isotope decline.
Resumo:
A high-resolution pollen record (sampling interval averages 820 years) has been obtained from ODP Site 1144 (water depth 2037 m), northern South China Sea. The 504-m sequence (in composition length) covers the last 1.03 million years according to micropaleontological and isotopic stratigraphy. The pollen assemblages are characterized by high proportions of Pinus and herb pollen, and by their frequent alternations. Based on these alternations, 29 pollen zones have been recognized that are closely correlated to the Marine Oxygen Isotope Stages (MIS) 1-29. Pinus- dominant pollen zones correspond to interglacial periods with lighter delta18O values, while herb-marked ones relate to the heavier delta18O stages assigned to glacials. Judging from the pollen data, the exposed northern continental shelf of the South China Sea during the glacials was covered by grassland, and the extensive northern shelf has formed only since MIS 6 (ca. 150 ka), probably as a result of tectonic subsidence. Tree pollen influx values are indicative of winter monsoon which began to intensify 600 ka ago. The summer monsoon variations can be approximated by the fern percentage within the total pollen and spore abundance, and the result shows high values in general occurring at interglacials, with the maxima at MIS 15, 5e and 1. The relatively high fern percentage with smaller amplitude in variations before 600 ka might suggest more stable humid conditions before the intensification of winter monsoon.