612 resultados para strontium isotopes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

ODP Leg 204, which drilled at Hydrate Ridge, provides unique insights into the fluid regime of an accretionary complex and delineates specific sub-seafloor pathways for fluid transport. Compaction and dewatering due to smectite-illite transition increase with distance from the toe of the accretionary prism and bring up fluids from deep within the accretionary complex to sampled depths (<= 600 mbsf). These fluids have a distinctly non-radiogenic strontium isotope signature indicating reaction with the oceanic basement. Boron isotopes are also consistent with a deep fluid source that has been modified by desorption of heavy boron as clay minerals change from smectite to illite. One of three major horizons serves as conduit for the transport of mainly fluid. Our results enable us to evaluate fluid migration pathways that play important roles on massive gas hydrate accumulations and seepage of methane-rich fluids on southern Hydrate Ridge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An integrated chemostratigraphic (87Sr/86Sr, d13C and 18O) study of benthic foraminifera is presented for a 210 m-thick, intermediate depth (upper/middle bathyal transition), Miocene nannofossil ooze section of Ocean Drilling Program Site 1120, Campbell Plateau off New Zealand. Our results indicate that new 87Sr/86Sr, d13C and d18O profiles are wholly consistent with their respective Miocene reference curves. These observations facilitate identification of a total of five reliable chemostratigraphic datums, which are based on the fundamental structural changes in the 87Sr/86Sr curve and paired simultaneous d13C and d18O events. The resultant age-depth relationship clearly shows that the Miocene (20-5 Ma) biopelagic sedimentation on the Campbell Plateau was essentially continuous at a moderate to high, linear sedimentation rate (17.5 m/m.y. with an exception of the uppermost 13 m). Our findings do not support the shipboard biostratigraphic age model, which assumes that the critical early-middle Miocene transition was interrupted by a major hiatus (<~3 m.y.). Because of its unique bathymetric setting at a paleowater-depth of ~ 600 m, which is among the shallowest of the coeval isotopically studied deep-sea sections in the South Pacific/Southern Ocean, Site 1120 will serve as a reference section for surveying the evolution of intermediate-water paleoceanography in the Southern Hemisphere across the middle Miocene climatic transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern erosion of the Himalaya, the world's largest mountain range, transfers huge dissolved and particulate loads to the ocean. It plays an important role in the long-term global carbon cycle, mostly through enhanced organic carbon burial in the Bengal Fan. To understand the role of past Himalayan erosion, the influence of changing climate and tectonic on erosion must be determined. Here we use a 12 Myr sedimentary record from the distal Bengal Fan (Deep Sea Drilling Project Site 218) to reconstruct the Mio-Pliocene history of Himalayan erosion. We use carbon stable isotopes (d13C) of bulk organic matter as paleo-environmental proxy and stratigraphic tool. Multi-isotopic - Sr, Nd and Os - data are used as proxies for the source of the sediments deposited in the Bengal Fan over time. d13C values of bulk organic matter shift dramatically towards less depleted values, revealing the widespread Late Miocene (ca. 7.4 Ma) expansion of C4 plants in the basin. Sr, Nd and Os isotopic compositions indicate a rather stable erosion pattern in the Himalaya range during the past 12 Myr. This supports the existence of a strong connection between the southern Tibetan plateau and the Bengal Fan. The tectonic evolution of the Himalaya range and Southern Tibet seems to have been unable to produce large re-organisation of the drainage system. Moreover, our data do not suggest a rapid change of the altitude of the southern Tibetan plateau during the past 12 Myr. Variations in Sr and Nd isotopic compositions around the late Miocene expansion of C4 plants are suggestive of a relative increase in the erosion of High Himalaya Crystalline rock (i.e. a simultaneous reduction of both Transhimalayan batholiths and Lesser Himalaya relative contributions). This could be related to an increase in aridity as suggested by the ecological and sedimentological changes at that time. A reversed trend in Sr and Nd isotopic compositions is observed at the Plio-Pleistocene transition that is likely related to higher precipitation and the development of glaciers in the Himalaya. These almost synchronous moderate changes in erosion pattern and climate changes during the late Miocene and at the Plio-Pleistocene transition support the notion of a dominant control of climate on Himalayan erosion during this time period. However, stable erosion regime during the Pleistocene is suggestive of a limited influence of the glacier development on Himalayan erosion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mediterranean Outflow Water (MOW) is characterised by higher temperatures and salinities than other ambient water masses. MOW spreads at water depths between 500 and 1500 m in the eastern North Atlantic and has been a source of salinity for the Atlantic Meridional Overturning Circulation in the North Atlantic. We used high-resolution Nd and Pb isotope records of past ambient seawater obtained from authigenic ferromanganese coatings of sediments in three gravity cores at 577, 1745 and 1974 m water depth in the Gulf of Cadiz and along the Portuguese margin complemented by a selection of surface sediments to reconstruct the extent and pathways of MOWover the past 23 000 years. The surface and downcore Nd isotope data from all water depths exhibit only a very small variability close to the present day composition of MOW but do not reflect the present day Nd isotopic stratification of the water column as determined from a nearby open ocean hydrographic station. In contrast, the Pb isotope records show significant and systematic variations, which provide evidence for a significantly different pattern of the MOW pathways between 20 000 and 12 000 years ago compared with the subsequent period of time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The assemblages of marine sediments on the SW Iberian shelf have been controlled by contributions from distinct sources, which have varied in response to environmental changes since the Last Glacial Maximum (LGM). The rapid, decadal scale Mediterranean overturning circulation permits mixing of suspended particles from the entire Mediterranean Sea. They are entrained into the suspended particulate matter (SPM) carried by Mediterranean Outflow Water (MOW), which enters the eastern North Atlantic through the Strait of Gibraltar and spreads at intermediate depths in the Gulf of Cadiz and along the Portuguese continental margin. Other major sediment sources that have contributed to the characteristics and budget of SPM along the flow path of MOW on the SW Iberian shelf are North African dust and river-transported particles from the Iberian Peninsula. To reconstruct climate- and circulation-driven changes in the supply of sediments over the past ~23000 cal yr B.P., radiogenic Nd, Sr and Pb isotope records of the clay-size sediment fraction were obtained from one gravity core in the Gulf of Cadiz (577 m water depth) and from two gravity cores on the Portuguese shelf (1745 m, 1974 m water depth). These records are supplemented by time series analyses of clay mineral abundances from the same set of samples. Contrary to expectations, the transition from the LGM to the Holocene was not accompanied by strong changes in sediment provenance or transport, whereas Heinrich Event 1 (H1) and the African Humid Period (AHP) were marked by significantly different isotopic signatures reflecting changes in source contributions caused by supply of ice rafted material originating from the North American craton during H1 and diminished supply of Saharan dust during the AHP. The data also reveal that the timing of variations in the clay mineral abundances was decoupled from that of the radiogenic isotope signatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The timing and nature of the penultimate deglaciation, also known as Termination II (T-II), is subject of controversial discussions due to the scarcity of precisely-dated palaeoclimate records. Here we present a new precisely-dated and highly-resolved multi-proxy stalagmite record covering T-II from the high alpine Schafsloch Cave in Switzerland, an area where climate is governed by the North Atlantic. The inception of stalagmite growth at 137.4 ± 1.4 kyr before present (BP) indicates the presence of drip water and cave air temperatures of above 0 °C, and is related to a climate-induced change in the thermal state (from cold-to warm-based) of the glacier above the cave. The cessation of stalagmite growth between 133.1 ± 0.7 and 131.9 ± 0.6 kyr BP is most likely related to distinct drop in temperature associated with Heinrich stadial 11. The resumption of stalagmite growth at 131.9 ± 0.6 kyr BP is accompanied by an abrupt increase in temperature and precipitation as indicated by distinct shifts in the oxygen and carbon isotopic composition as well as in trace element concentrations. The mid-point of T-II is around 131.8 ± 0.6 kyr BP in the Schafsloch Cave record is significantly earlier compared to the age of 129.1 ± 0.1 kyr BP in the Sanbao Cave record from China. The different ages between both records can be best explained by the competing effects of insolation and glacial boundary forcing on seasonality and snow cover extent in Eurasia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the influence of carbonate system parameters (carbonate ion concentration, [CO3**2-]; carbonate ion saturation, Delta [CO3**2-]) on the trace element and stable isotope ratios in the endobenthic foraminifera Oridorsalis umbonatus. Data from modern core top samples from the Namibian continental slope suggest that the shell composition of this species is influenced by the chemistry of the pore-water. For these organic-rich sediments, the impact of ocean bottom water properties on both pore-water and shell chemistry is surprisingly small. Sr/Ca correlates positively with [CO3**2-] and to a lesser extent with Delta [CO3**2-], which is opposed to previous results. A [CO3**2-] decrease of 10 µmol/kg leads to an increase of 0.05 mmol/mol in Sr/Ca. We observe a correlation between shell d18O (corrected for temperature and d18O seawater) and [CO3**2-], however, the variability of the corrected d18O is close to the analytical limit. No clear dependences were observed for d13C and Mg/Ca.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nd isotopes preserved in fossil fish teeth and ferromanganese crusts have become a common tool for tracking variations in water mass composition and circulation through time. Studies of Nd isotopes extracted from Pleistocene to Holocene bulk sediments using hydroxylamine hydrochloride (HH) solution yield high resolution records of Nd isotopes that can be interpreted in terms of deep water circulation, but concerns about diagenesis and potential contamination of the seawater signal limit application of this technique to geologically young samples. In this study we demonstrate that Nd extracted from the > 63 µm, decarbonated fraction of older Ocean Drilling Program (ODP) sediments using a 0.02 M HH solution produces Nd isotopic ratios that are within error of values from cleaned fossil fish teeth collected from the same samples, indicating that the HH-extractions are robust recorders of deep sea Nd isotopes. This excellent correlation was achieved for 94 paired fish teeth and HH-extraction samples ranging in age from the Miocene to Cretaceous, distributed throughout the north, tropical and south Atlantic, and composed of a range of lithologies including carbonate-rich oozes/chalks and black shales. The strong Nd signal recovered from Cretaceous anoxic black shale sequences is unlikely to be associated with ferromanganese oxide coatings, but may be derived from abundant phosphatic fish teeth and debris or organic matter in these samples. In contrast to the deep water Nd isotopic signal, Sr isotopes from HH-extractions are often offset from seawater values, suggesting that evaluation of Sr isotopes is a conservative test for the integrity of Nd isotopes in the HH fraction. However, rare earth elements (REE) from the HH-extractions and fish teeth produce distinctive middle REE bulge patterns that may prove useful for evaluating whether the Nd isotopic signal represents uncontaminated seawater. Alternatively, a few paired HH-extraction and cleaned fish teeth samples from each site of interest can be used to verify the seawater composition of the HH-extractions. The similarity between isotopic values for the HH-extraction and fish teeth illustrates that the extensive cleaning protocol applied to fish teeth samples is not necessary in typical, carbonate-rich, deep sea sediments.