247 resultados para physiologic values
Resumo:
Anthropogenic carbon dioxide emissions induce ocean acidification, thereby reducing carbonate ion concentration, which may affect the ability of calcifying organisms to build shells. Pteropods, the main planktonic producers of aragonite in the worlds' oceans, may be particularly vulnerable to changes in sea water chemistry. The negative effects are expected to be most severe at high-latitudes, where natural carbonate ion concentrations are low. In this study we investigated the combined effects of ocean acidification and freshening on Limacina retroversa, the dominant pteropod in sub polar areas. Living L. retroversa, collected in Northern Norwegian Sea, were exposed to four different pH values ranging from the pre-industrial level to the forecasted end of century ocean acidification scenario. Since over the past half-century the Norwegian Sea has experienced a progressive freshening with time, each pH level was combined with a salinity gradient in two factorial, randomized experiments investigating shell degradation, swimming behavior and survival. In addition, to investigate shell degradation without any physiologic influence, one perturbation experiments using only shells of dead pteropods was performed. Lower pH reduced shell mass whereas shell dissolution increased with pCO2. Interestingly, shells of dead organisms had a higher degree of dissolution than shells of living individuals. Mortality of Limacina retroversa was strongly affected only when both pH and salinity reduced simultaneously. The combined effects of lower salinity and lower pH also affected negatively the ability of pteropods to swim upwards. Results suggest that the energy cost of maintaining ion balance and avoiding sinking (in low salinity scenario) combined with the extra energy cost necessary to counteract shell dissolution (in high pCO2 scenario), exceed the available energy budget of this organism causing the pteropods to change swimming behavior and begin to collapse. Since L. retroversa play an important role in the transport of carbonates to the deep oceans these findings have significant implications for the mechanisms influencing the inorganic carbon cycle in the sub-polar area.
Resumo:
A new, high-resolution planktonic foraminiferal Mg/Ca-based ocean temperature record has been generated for deep sea core MD02-2496, sited offshore of Vancouver Island, Western Canada during the last deglaciation (21-12 ka). The relationship between Cordilleran Ice Sheet (CIS) retreat and changing regional ocean temperatures has been reconstructed through glaciomarine sediments in MD02-2496 that capture tidewater glacier response to surface ocean thermal forcing. At CIS maximum extent, the marine margin of the ice sheet advanced onto the continental shelf. During this interval, ocean temperatures recorded by surface ocean dwelling Globigerina bulloides remained a relatively constant ~7.5°C while subsurface dwelling Neogloboquadrina pachyderma (s.) recorded temperatures of ~5°C. These ocean temperatures were sufficiently warm to induce significant melt along the tidewater ice terminus similar to modern Alaskan tidewater glacial systems. During the deglacial retreat of the CIS, the N. pachyderma temperature record shows two distinct warming steps of ~2 and 2.5°C between 17.2-16 and 15.5-14 ka respectively, coincident with ice rafting events from the CIS, while G. bulloides records an ~3°C warming from 15 to14 ka. We hypothesize that submarine melting resulting from relatively warm ocean temperatures was an important process driving ice removal from CIS tidewater glaciers during the initial stages of deglaciation.
Resumo:
Vertical permeability and sediment consolidation measurements were taken on seven whole-round drill cores from Sites 1253 (three samples), 1254 (one sample), and 1255 (three samples) drilled during Ocean Drilling Program Leg 205 in the Middle America Trench off of Costa Rica's Pacific Coast. Consolidation behavior including slopes of elastic rebound and virgin compression curves (Cc) was measured by constant rate of strain tests. Permeabilities were determined from flow-through experiments during stepped-load tests and by using coefficient of consolidation (Cv) values continuously while loading. Consolidation curves and the Casagrande method were used to determine maximum preconsolidation stress. Elastic slopes of consolidation curves ranged from 0.097 to 0.158 in pelagic sediments and 0.0075 to 0.018 in hemipelagic sediments. Cc values ranged from 1.225 to 1.427 for pelagic carbonates and 0.504 to 0.826 for hemipelagic clay-rich sediments. In samples consolidated to an axial stress of ~20 MPa, permeabilities determined by flow-through experiments ranged from a low value of 7.66 x 10**-20 m**2 in hemipelagic sediments to a maximum value of 1.03 x 10**-16 m**2 in pelagic sediments. Permeabilities calculated from Cv values in the hemipelagic sediments ranged from 4.81 x 10**-16 to 7.66 x 10**-20 m**2 for porosities 49.9%-26.1%.
Resumo:
We assessed relationships between phytoplankton standing stock, measured as chlorophyll a (Chl a), primary production (PP), and heterotrophic picoplankton production (HPP), in the epipelagic zone (0-100 m) as well as in the mesopelagic zone (100-1,000 m) in the polar frontal zone of the Atlantic sector of the Southern Ocean in austral summer (late December to January) and fall (March to early May). Integrated epipelagic HPP was positively correlated to integrated PP in summer (data for fall are not available) but not to integrated Chl a. However, integrated mesopelagic HPP was positively correlated to Chl a in summer as well as fall. The mesopelagic fraction of HPP as a percentage of total HPP was also positively correlated to Chl a, whereas the epipelagic fraction of HPP was negatively correlated to it. These results indicate that with increasing phytoplankton standing stock, constituted mainly of highly silicified diatoms, the focus of its consumption by heterotrophic picoplankton shifts from epipelagic to mesopelagic waters. With a growth efficiency of 30%, our HPP data indicate that in both the epipelagic and mesopelagic zone heterotrophic picoplankton consume 20% of PP. Mesopelagic heterotrophic picoplankton consumed around 80% of the sinking flux, measured from depletion of 234Th, which is a lower fraction than that reported from the central and subarctic Pacific. Our analysis indicates that it is important to include mesopelagic HPP in comprehensive assessments of the microbial consumption of PP, phytoplankton biomass, and particulate organic matter in cold oceanic systems with high rates of export production.