255 resultados para lead isotope


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The onset of abundant ice-rafted debris (IRD) deposition in the Nordic Seas and subpolar North Atlantic Ocean 2.72 millions of years ago (Ma) is thought to record the Pliocene onset of major northern hemisphere glaciation (NHG) due to a synchronous advance of North American Laurentide, Scandinavian and Greenland ice-sheets to their marine calving margins during marine isotope stage (MIS) G6. Numerous marine and terrestrial records from the Nordic Seas region indicate that extensive ice sheets on Greenland and Scandinavia increased IRD inputs to these seas from 2.72 Ma. The timing of ice-sheet expansion on North America as tracked by IRD deposition in the subpolar North Atlantic Ocean, however, is less clear because both Europe and North America are potential sources for icebergs in this region. Moreover, cosmogenic-dating of terrestrial tills on North America indicate that the Laurentide Ice Sheet did not extend to ~39°N until 2.4 ±0.14 Ma, at least 180 ka after the onset of major IRD deposition at 2.72 Ma. To address this problem,we present the first detailed analysis of the geochemical provenance of individual sand-sized IRD deposited in the subpolar North Atlantic Ocean between MIS G6 and 100 (~2.72-2.52 Ma). IRD provenance is assessed using laser ablation lead (Pb) isotope analyses of single ice-rafted (>150 mm) feldspar grains. To track when an ice-rafting setting consistent with major NHG first occurred in the North Atlantic Ocean during the Pliocene intensification of NHG (iNHG), we investigate when the Pb-isotope composition (206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb) of feldspars deposited at DSDP Site 611 first resembles that determined for IRD deposited at this site during MIS 100, the oldest glacial for which there exists convincing evidence for widespread glaciation of North America. Whilst Quaternary-magnitude IRD fluxes exist at Site 611 during glacials from 2.72 Ma, we find that the provenance of this IRD is not constant. Instead, we find that the Pb isotope composition of IRD at our study site is not consistent with major NHG until MIS G2 (2.64 Ma). We hypothesise that IRD deposition in the North Atlantic Ocean prior to MIS G2 was dominated by iceberg calving from Greenland and Scandinavia. We further suggest that the grounding line of continental ice on Northeast America may not have extended onto the continental shelf and calved significant numbers of icebergs to the North Atlantic Ocean during glacials until 2.64 Ma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Samples of dust from the Greenland Ice Sheet Project 2 (GISP2) ice core, Summit, Greenland, dated within marine isotope stage 2 (between 23,340 and 26,180 calendar years B.P.) around the time of the coldest, local, last glacial temperatures, have been analyzed to determine their provenance. To accomplish this, we have compared them with approximately Coeval aeolian sediments (mostly loesses) sampled in possible source areas (PSAs) from around the northern hemisphere. The <5-µm grain-size fraction of these samples was analyzed on the basis that it corresponds to the atmospheric dust component of that time and locale, which was sufficiently fine grained to be transported over long distances. On the basis of comparison of the clay mineralogy and Sr, Nd and Pb isotope composition with ice dust and PSAs and assuming that we have sampled the most important PSAs, we have determined that the probable source area of these GISP2 dusts was in eastern Asia. The dust was not derived from either the midcontinental United States or the Sahara, two more proximal areas that have been suggested as potential sources based on atmospheric circulation modeling. Except for a brief period during an interstadial, when dust transport was exceptionally low (for glacial times) and had a mineralogical composition indicative of a slightly more southern provenance, the source area of the dust did not change significantly during times of variably higher fluxes of dust with larger mean grain size or lower fluxes of dust with smaller mean grain size. This includes the high-dust period that correlates with the Heinrich 2 period of major iceberg discharge into the North Atlantic. Variable wind strengths must therefore be invoked to account for these abrupt and significant changes in dust flux and grain size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reconstruction of the geologic history of the Yenisey Ridge, which developed as an accretionary collision orogen on the western margin of the Siberian craton is essential to understanding the evolution of mobile belts surrounding older cratons, as well as to resolving the recently much debated problem of whether Siberia was part of the supercontinent Rodinia. Available paleotectonic models suggest that this supercontinent was assembled at the Middle-Late Riphean boundary (1100-900 Ma) as a result of the Grenville orogeny, the first long-lived mountain building event which occurred in geosynclinal areas during the Neogaea. However, the character of crustal evolution at that stage is still speculative due to the lack of reliable and conclusive isotope data. In many current geodynamic models, a common underlying assumption is that the Yenisey Ridge showed very little endogenic activity for 1 Gyr, from the time of Tarak granite emplacement (1900-1840 Ma) to the Middle Neoproterozoic (~750 Ma). On the basis of this assumption, several recent studies suggested the absence of Grenvillian collisional events within the Yenisey Ridge. The results of the SHRIMP II U-Pb analysis of rift-related plagiogranites of the Nemtikha Complex, Yenisey Ridge (1380-1360 Ma) suggest an increase in magmatic activity in the Mesoproterozoic. Interpretation of these results in terms of a supercontinent cycle may help find evidence for possible occurrence of the Grenville orogeny on the western margin of the Siberian craton. With this in mind, we attempted to reconstruct using recent geochronological constraints the evolution of metapelitic rocks from the Teya polymetamorphic complex (TPMC), which is a good example of superimposed zoning of low and medium-pressure facies series. High precision age determinations from rock complexes formed in different geodynamic settings under different thermodynamic conditions and geothermal gradients were used to distinguish several major metamorphic events and unravel their time relations with tectonic and magmatic activity in the region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mid-Cretaceous (Barremian-Turonian) plankton preserved in deep-sea marl, organic-rich shale, and pelagic carbonate hold an important record of how the marine biosphere responded to short- and long-term changes in the ocean-climate system. Oceanic anoxic events (OAEs) were short-lived episodes of organic carbon burial that are distinguished by their widespread distribution as discrete beds of black shale and/or pronounced carbon isotopic excursions. OAE1a in the early Aptian (~120.5 Ma) and OAE2 at the Cenomanian/Turonian boundary (~93.5 Ma) were global in their distribution and associated with heightened marine productivity. OAE1b spans the Aptian/Albian boundary (~113-109 Ma) and represents a protracted interval of dysoxia with multiple discrete black shales across parts of Tethys (including Mexico), while OAE1d developed across eastern and western Tethys and in other locales during the latest Albian (~99.5 Ma). Mineralized plankton experienced accelerated rates of speciation and extinction at or near the major Cretaceous OAEs, and strontium isotopic evidence suggests a possible link to times of rapid oceanic plateau formation and/or increased rates of ridge crest volcanism. Elevated levels of trace metals in OAE1a and OAE2 strata suggest that marine productivity may have been facilitated by increased availability of dissolved iron. The association of plankton turnover and carbon isotopic excursions with each of the major OAEs, despite the variable geographic distribution of black shale accumulation, points to widespread changes in the ocean-climate system. Ocean crust production and hydrothermal activity increased in the late Aptian. Faster spreading rates [and/or increased ridge length] drove a long-term (Albian-early Turonian) rise in sea level and CO2-induced global warming. Changes in ocean circulation, water column stratification, and nutrient partitioning lead to a reorganization of plankton community structure and widespread carbonate (chalk) deposition during the Late Cretaceous. We conclude that there were important linkages between submarine volcanism, plankton evolution, and the cycling of carbon through the marine biosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pliocene to recent volcanic rocks from the Bulusan volcanic complex in the southern part of the Bicol arc (Philippines) exhibit a wide compositional range (medium- to high-K basaltic-andesites, andesites and a dacite/rhyolite suite), but are characterised by large ion lithophile element enrichments and HFS element depletions typical of subduction-related rocks. Field, petrographic and geochemical data indicate that the more silicic syn- and post-caldera magmas have been influenced by intracrustal processes such as magma mixing and fractional crystallisation. However, the available data indicate that the Bicol rocks as a group exhibit relatively lower and less variable 87Sr/86Sr ratios (0.7036-0.7039) compared with many of the other subduction-related volcanics from the Philippine archipelago. The Pb isotope ratios of the Bicol volcanics appear to be unlike those of other Philippine arc segments. They typically plot within and below the data field for the Philippine Sea Basin on 207Pb/204Pb versus 206Pb/204Pb and 208Pb/204Pb versus 206Pb/204Pb diagrams, implying a pre-subduction mantle wedge similar to that sampled by the Palau Kyushu Ridge, east of the Philippine Trench. 143Nd/144Nd ratios are moderately variable (0.51285-0.51300). Low silica (<55 wt%) samples that have lower 143Nd/144Nd tend to have high Th/Nd, high Th/Nb, and moderately low Ce/Ce* ratios. Unlike some other arc segments in the Philippines (e.g. the Babuyan-Taiwan segment), there is little evidence for the involvement of subducted terrigenous sediment. Instead, the moderately low 143Nd/144Nd ratios in some of the Bicol volcanics may result from subduction of pelagic sediment (low Ce/Ce*, high Th/Nd, and high Th/Nb) and its incorporation into the mantle wedge via a slabderived partial melt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A record of changes in Pb and Sr isotopic composition of two cores (DSDP 86-576A and LL44- GPC-3) from the red clay region of the central North Pacific has been determined for the past 60-65 million years. The isotope records of the eolian silicate fraction of the red clays reflect the change in source area as the core sites migrated under different wind systems. The Sr isotope compositions of eolian silicate material are consistent with Asian loess and North American arc volcanism that has been recognized from mineralogical studies. The silicate-bound eolian Pb isotopic compositions similarly reflect Asian loess and arc volcanism. The isotope records of three ferromanganese crusts from similar locations in the central Pacific are similar to the eolian component of red clays, but offset to less radiogenic values. This may be due to two mechanisms: (1) Pb that can be removed from eolian material by seawater is much less radiogenic, or less likely (2) hydrothermal Pb can be transported further away from venting sites through particle exchange with seawater, despite hydrothermal venting acting as a net sink of oceanic Pb. The temporal changes in Pb isotopes in the ferromanganese crusts, bulk red clays and eolian silicates are similar although offset from each other suggesting that eolian deposition is an important source of Pb to seawater and to ferromanganese crusts. This contrasts with the Atlantic and Southern Ocean where more intense deep water flow leads to isotopic gradients in FeMn crusts that do not reflect surface water conditions immediately above the crust. A mechanism is proposed which accounts for Pacific deepwater Pb being isotopically influenced by eolian deposition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ODP Leg 104 recovered 914 m of volcanics at Site 642 on the Vøring Plateau in the Norwegian Sea. The upper series of these volcanics correlates with seaward-dipping seismic reflectors (DRS), and is tholeiitic in character. The lower series underlies the DRS and is broadly andesitic in character. Rb-Sr, Sm-Nd, and Pb isotopic analyses show that upper series samples have isotopic features characteristic of MORB, except for one dike sample that has a Pb isotopic composition that may indicate interaction of its parent magma with older continental crust. The five most silicic samples from the lower series, which occur high up in the sequence, define a 63 ± 19 Ma Rb-Sr whole-rock isochron age, and have an initial 87Sr/86Sr of 0.7116 ± 0.0004. Other lower series samples have lower initial 87Sr/86Sr, but all are greater than any upper series rock. The combined evidence of initial 87Sr/86Sr, initial epsilon-Nd values, Sm-Nd model ages, Pb isotopic compositions, and petrographic features clearly indicate that lower series rocks were derived, at least in part, from continental crustal source materials. That the DRS is underlain by rocks of continental character is an important observation, constraining models for the development of DRS-type passive continental margins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrographical changes of the southern Indian Ocean over the last 230 kyr, is reconstructed using a 17-m-long sediment core (MD 88 770; 46°01'S 96°28'E, 3290m). The oxygen and carbon isotopic composition of planktonic (N. pachyderma sinistra and G. bulloides) and benthic (Cibicidoides wuellerstorfi, Epistominella exigua, and Melonis barleeanum) foraminifera have been analysed. Changes in sea surface temperatures (SST) are calculated using diatom and foraminiferal transfer functions. A new core top calibration for the Southern Ocean allows an extension of the method developed in the North Atlantic to estimate paleosalinities (Duplessy et al., 1991). The age scale is built using accelerator mass spectrometry (AMS) 14C dating of N. pachyderma s. for the last 35 kyr, and an astronomical age scale beyond. Changes in surface temperature and salinity clearly lead (by 3 to 7 kyr) deep water variations. Thus changes in deep water circulation are not the cause of the early response of the surface Southern Ocean to climatic changes. We suggest that the early warming and cooling of the Southern Ocean result from at least two processes acting in different orbital bands and latitudes: (1) seasonality modulated by obliquity affects the high-latitude ocean surface albedo (sea ice coverage) and heat transfer to and from the atmosphere; (2) low-latitude insolation modulated by precession influences directly the atmosphere dynamic and related precipitation/ evaporation changes, which may significantly change heat transfer to the high southern latitudes, through their control on latitudinal distribution of the major frontal zones and on the conditions of intermediate and deep water formation.