638 resultados para iron (0)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porewaters in site 680 Peru Margin sediments contain dissolved sulfide over a depth of approximately 70 m which, at a sedimentation rate of 0.005 cm/yr, gives a sediment exposure time to dissolved sulfide of about 1.4 Myr. Reactions with dissolved sulfide cause the site 680 sediments to show a progressive decrease in a poorly-reactive silicate iron fraction, defined as the difference between iron extracted by dithionite (FeD) at room temperature and that extracted by boiling concentrated HCl (FeH), normalised to the total iron content (FeT). Straight line plots are obtained for ln[(FeH - FeD)/FeT] against time of burial, from which a first order rate constant of 0.29 1/Myr (equivalent to a half-life of 2.4 Myr) can be derived for the sulfidation of this silicate iron. Comparable half-lives are also found for the same poorly-reactive iron fraction in the nearby site 681 and 684 sediments. This silicate Fe fraction comprises 0.8-1.0% Fe, only 30-60% of which reacts even with 1.5-3 million years exposure to dissolved sulfide. Diagenetic models based on porewater concentrations of sulfate and sulfide, and solid phase iron contents, at site 680 are consistent in indicating that this poorly-reactive iron fraction is only sulfidized on a million year time scale. Silicate iron not extracted by HCl can be regarded as unreactive towards dissolved sulfide on the time scales encountered in marine sediments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The speciation of iron was investigated in three shelf seas and three deep basins of the Arctic Ocean in 2007. The dissolved fraction (<0.2 µm) and a fraction < 1000 kDa were considered here. In addition, unfiltered samples were analyzed. Between 74 and 83% of dissolved iron was present in the fraction < 1000 kDa at all stations and depth, except at the chlorophyll maximum (42-64%). Distinct trends in iron concentrations and ligand characteristics were observed from the shelf seas toward the central deep basins, with a decrease of total dissolvable iron ([TDFe] > 3 nM on the shelves and [TDFe] < 2 nM in the Makarov Basin). A relative enrichment of particulate Fe toward the bottom was revealed at all stations, indicating Fe export toward the deep ocean. In deep waters, dissolved ligands became less saturated with Fe (increase of [Excess L]/[Fe]) from the Nansen Basin via the Amundsen Basin toward the Makarov Basin. This trend was explained by the reactivity of the ligands, higher (log alpha > 13.5) in the Nansen and Amundsen basins than in the Makarov Basin (log alpha <13) where the sources of Fe and ligands were limited. The ligands became nearly saturated with depth in the Amundsen and Nansen Basins, favoring Fe removal in the deep ocean, whereas in the deep Makarov Basin, they became unsaturated with depth. Still here scavenging occurred. Although scavenging of Fe was attenuated by the presence of unsaturated organic ligands, their low reactivity in combination with a lack of sources of Fe in the Makarov Basin might be the reason of a net export of Fe to the sediment.