184 resultados para international creative exchange
Resumo:
Approaches to quantify the organic carbon accumulation on a global scale generally do not consider the small-scale variability of sedimentary and oceanographic boundary conditions along continental margins. In this study, we present a new approach to regionalize the total organic carbon (TOC) content in surface sediments (<5 cm sediment depth). It is based on a compilation of more than 5500 single measurements from various sources. Global TOC distribution was determined by the application of a combined qualitative and quantitative-geostatistical method. Overall, 33 benthic TOC-based provinces were defined and used to process the global distribution pattern of the TOC content in surface sediments in a 1°x1° grid resolution. Regional dependencies of data points within each single province are expressed by modeled semi-variograms. Measured and estimated TOC values show good correlation, emphasizing the reasonable applicability of the method. The accumulation of organic carbon in marine surface sediments is a key parameter in the control of mineralization processes and the material exchange between the sediment and the ocean water. Our approach will help to improve global budgets of nutrient and carbon cycles.
Resumo:
Radiogenic isotopes of hafnium (Hf) and neodymium (Nd) are powerful tracers for water mass transport and trace metal cycling in the present and past oceans. However, due to the scarcity of available data the processes governing their distribution are not well understood. Here we present the first combined dissolved Hf and Nd isotope and concentration data from surface waters of the Atlantic sector of the Southern Ocean. The samples were collected along the Zero Meridian, in the Weddell Sea and in the Drake Passage during RV Polarstern expeditions ANT-XXIV/3 and ANT-XXIII/3 in the frame of the International Polar Year (IPY) and the GEOTRACES program. The general distribution of Hf and Nd concentrations in the region is similar. However, at the northernmost station located 200 km southwest of Cape Town a pronounced increase of the Nd concentration is observed, whereas the Hf concentration is minimal, suggesting much less Hf than Nd is released by the weathering of the South African Archean cratonic rocks. From the southern part of the Subtropical Front (STF) to the Polar Front (PF) Hf and Nd show the lowest concentrations (<0.12 pmol/kg and 10 pmol/kg, respectively), most probably due to the low terrigenous flux in this area and efficient scavenging of Hf and Nd by biogenic opal. In the vicinity of landmasses the dissolved Hf and Nd isotope compositions are clearly labelled by terrigenous inputs. Near South Africa Nd isotope values as low as epsilon-Nd = -18.9 indicate unradiogenic inputs supplied via the Agulhas Current. Further south the isotopic data show significant increases to epsilon-Hf = 6.1 and epsilon-Nd = -4.0 documenting exchange of seawater Nd and Hf with the Antarctic Peninsula. In the open Southern Ocean the Nd isotope compositions are relatively homogeneous (epsilon-Nd ~ -8 to -8.5) towards the STF, within the Antarctic Circumpolar Current, in the Weddell Gyre, and the Drake Pasage. The Hf isotope compositions in the entire study area only show a small range between epsilon-Hf = +6.1 and +2.8 support Hf to be more readily released from young mafic rocks compared to old continental ones. The Nd isotope composition ranges from epsilon-Nd = -18.9 to -4.0 showing Nd isotopes to be a sensitive tracer for the provenance of weathering inputs into surface waters of the Southern Ocean.
Resumo:
The development of the ecosystem approach and models for the management of ocean marine resources requires easy access to standard validated datasets of historical catch data for the main exploited species. They are used to measure the impact of biomass removal by fisheries and to evaluate the models skills, while the use of standard dataset facilitates models inter-comparison. North Atlantic albacore tuna is exploited all year round by longline and in summer and autumn by surface fisheries and fishery statistics compiled by the International Commission for the Conservation of Atlantic Tunas (ICCAT). Catch and effort with geographical coordinates at monthly spatial resolution of 1° or 5° squares were extracted for this species with a careful definition of fisheries and data screening. In total, thirteen fisheries were defined for the period 1956-2010, with fishing gears longline, troll, mid-water trawl and bait fishing. However, the spatialized catch effort data available in ICCAT database represent a fraction of the entire total catch. Length frequencies of catch were also extracted according to the definition of fisheries above for the period 1956-2010 with a quarterly temporal resolution and spatial resolutions varying from 1°x 1° to 10°x 20°. The resolution used to measure the fish also varies with size-bins of 1, 2 or 5 cm (Fork Length). The screening of data allowed detecting inconsistencies with a relatively large number of samples larger than 150 cm while all studies on the growth of albacore suggest that fish rarely grow up over 130 cm. Therefore, a threshold value of 130 cm has been arbitrarily fixed and all length frequency data above this value removed from the original data set.
Resumo:
The Atlantis Massif (Mid-Atlantic Ridge, 30°N) is an oceanic core complex marked by distinct variations in crustal architecture, deformation and metamorphism over distances of at least 5 km. We report Sr and Nd isotope data and Rare Earth Element (REE) concentrations of gabbroic and ultramafic rocks drilled at the central dome (IODP Hole 1309D) and recovered by submersible from the southern ridge of the massif that underlie the peridotite-hosted Lost City Hydrothermal Field. Systematic variations between the two areas document variations in seawater penetration and degree of fluid-rock interaction during uplift and emplacement of the massif and hydrothermal activity associated with the formation of Lost City. Homogeneous Sr and Nd isotope compositions of the gabbroic rocks from the two areas (87Sr/86Sr: 0.70261-0.70429 and epsilon-Nd: +9.1 to +12.1) indicate an origin from a depleted mantle. At the central dome, serpentinized peridotites are rare and show elevated seawater-like Sr isotope compositions related to serpentinization at shallow crustal levels, whereas unaltered mantle isotopic compositions preserved in the gabbroic rocks attest to limited seawater interaction at depth. This portion of the massif remained relatively unaffected by Lost City hydrothermal activity. In contrast, pervasive alteration and seawater-like Sr and Nd isotope compositions of serpentinites at the southern wall (87Sr/86Sr: 0.70885-0.70918; epsilon-Nd: -4.7 to +11.3) indicate very high fluid-rock ratios (~20 and up to 10**6) and enhanced fluid fluxes during hydrothermal circulation. Our studies show that Nd isotopes are most sensitive to high fluid fluxes and are thus an important geochemical tracer for quantification of water-rock ratios in hydrothermal systems. Our results suggest that high fluxes and long-lived serpentinization processes may be critical to the formation of Lost City-type systems and that normal faulting and mass wasting in the south facilitate seawater penetration necessary to sustain hydrothermal activity.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
A continuous time series of annual soil thaw records, extending from 1994 to 2009, is available for comparison with the records of thaw obtained from the Biocomplexity Experiment (BE) for the period 2006-2009. Discontinuous records of thaw at Barrow from wet tundra sites date back to the 1960s. Comparisons between the longer records with the BE observations reveal strong similarities. Records of permafrost temperature, reflecting changes in the annual surface energy exchange, are available from the 1950s for comparison with results from measurement programs begun in 2002. The long-term systematic geocryological investigations at Barrow indicate an increase in permafrost temperature, especially during the last several years. The increase in near-surface permafrost temperature is most pronounced in winter. Marked trends are not apparent in the active-layer record, although subsidence measurements on the North Slope indicate that penetration into the ice-rich layer at the top of permafrost has occurred over the past decade. Active-layer thickness values from the 1960s are generally higher than those from the 1990s, and are very similar to those of the 2000s. Analysis of spatial active-layer observations at representative locations demonstrates significant variations in active-layer thickness between different landscape types, reflecting the influence of vegetation, substrate, microtopography, and, especially, soil moisture. Landscape-specific differences exist in the response of active-layer thickness to climatic forcing. These differences are attributable to the existence of localized controls related to combinations of surface and subsurface characteristics. The geocryological records at Barrow illustrate the importance and effectiveness of sustained, well organized monitoring efforts to document long-term trends.
Resumo:
We calculate net community production (NCP) during summer 2005-2006 and spring 2006 in the Ross Sea using multiple approaches to determine the magnitude and consistency of rates. Water column carbon and nutrient inventories and surface ocean O2/Ar data are compared to satellite-derived primary productivity (PP) estimates and 14C uptake experiments. In spring, NCP was related to stratification proximal to upper ocean fronts. In summer, the most intense C drawdown was in shallow mixed layers affected by ice melt; depth-integrated C drawdown, however, increased with mixing depth. Delta O2/Ar-based methods, relying on gas exchange reconstructions, underestimate NCP due to seasonal variations in surface Delta O2/Ar and NCP rates. Mixed layer Delta O2/Ar requires approximately 60 days to reach steady state, starting from early spring. Additionally, cold temperatures prolong the sensitivity of gas exchange reconstructions to past NCP variability. Complex vertical structure, in addition to the seasonal cycle, affects interpretations of surface-based observations, including those made from satellites. During both spring and summer, substantial fractions of NCP were below the mixed layer. Satellite-derived estimates tended to overestimate PP relative to 14C-based estimates, most severely in locations of stronger upper water column stratification. Biases notwithstanding, NCP-PP comparisons indicated that community respiration was of similar magnitude to NCP. We observed that a substantial portion of NCP remained as suspended particulate matter in the upper water column, demonstrating a lag between production and export. Resolving the dynamic physical processes that structure variance in NCP and its fate will enhance the understanding of the carbon cycling in highly productive Antarctic environments.