167 resultados para growth rate and growth regulation
Resumo:
Ocean warming and acidification are serious threats to marine life. While each stressor alone has been studied in detail, their combined effects on the outcome of ecological interactions are poorly understood. We measured predation rates and predator selectivity of two closely related species of damselfish exposed to a predatory dottyback. We found temperature and CO2 interacted synergistically on overall predation rate, but antagonistically on predator selectivity. Notably, elevated CO2 or temperature alone reversed predator selectivity, but the interaction between the two stressors cancelled selectivity. Routine metabolic rates of the two prey showed strong species differences in tolerance to CO2 and not temperature, but these differences did not correlate with recorded mortality. This highlights the difficulty of linking species-level physiological tolerance to resulting ecological outcomes. This study is the first to document both synergistic and antagonistic effects of elevated CO2 and temperature on a crucial ecological process like predator-prey dynamics.
Resumo:
Oxygen isotope records, radiocarbon AMS data, carbonate and opal stratigraphy, sediment magnetic susceptibility, tephrachronology, and paleontological results were used to obtain detailed sediment stratigraphy and an age model for the studied cores. For studying sea-ice sedimentation an analysis of lithogenic grain number in >0.15 mm grain size fraction of bottom sediments was carried out. For quantitative estimation of intensity ice-rafting debris sedimentation number of IRD particles per sq cm per ka was calculated. Obtained results allowed to plot IRD AR distribution for the first oxygen isotope stage (0-12.5 14C ka, 14C) and for the second stage (12.5-24 14C ka). The first stage was subdivided into the latest deglaciation and the beginning of Holocene (6-12.5 14C ka) (transitive period), when the sea level was changing significantly, and the second part of Holocene (0-6 14C ka), when climate conditions and the sea level were similar to modern estimates. Data clearly show strong increase in ice formation in the glacial Sea of Okhotsk and its extent in the middle part of the sea. Average annual duration of ice coverage during glaciation was longer than that for interglaciation. However the sea ice cover was not continuous all the year round and disappeared in summer time except the far northwestern part of the sea.
Resumo:
Reconstructing the long-term evolution of organic sedimentation in the eastern Equatorial Atlantic (ODP Leg 159) provides information about the history of the climate/ocean system, sediment accumulation, and deposition of hydrocarbon-prone rocks. The recovery of a continuous, 1200 m long sequence at ODP Site 959 covering sediments from Albian (?) to the present day (about 120 Ma) makes this position a key location to study these aspects in a tropical oceanic setting. New high resolution carbon and pyrolysis records identify three main periods of enhanced organic carbon accumulation in the eastern tropical Atlantic, i.e. the late Cretaceous, the Eocene-Oligocene, and the Pliocene-Pleistocene. Formation of Upper Cretaceous black shales off West Africa was closely related to the tectonosedimentary evolution of the semi-isolated Deep Ivorian Basin north of the Côte d'Ivoire-Ghana Transform Margin. Their deposition was confined to certain intervals of the last two Cretaceous anoxic events, the early Turonian OAE2 and the Coniacian-Santonian OAE3. Organic geochemical characteristics of laminated Coniacian-Santonian shales reveal peak organic carbon concentrations of up to 17% and kerogen type I/II organic matter, which qualify them as excellent hydrocarbon source rocks, similar to those reported from other marginal and deep sea basins. A middle to late Eocene high productivity period occurred off equatorial West Africa. Porcellanites deposited during that interval show enhanced total organic carbon (TOC) accumulation and a good hydrocarbon potential associated with oil-prone kerogen. Deposition of these TOC-rich beds was likely related to a reversal in the deep-water circulation in the adjacent Sierra Leone Basin. Accordingly, outflow of old deep waters of Southern Ocean origin from the Sierra Leone Basin into the northern Gulf of Guinea favored upwelling of nutrient-enriched waters and simultaneously enhanced the preservation potential of sedimentary organic matter along the West African continental margin. A pronounced cyclicity in the carbon record of Oligocene-lower Miocene diatomite-chalk interbeds indicates orbital forcing of paleoceanographic conditions in the eastern Equatorial Atlantic since the Oligocene-Miocene transition. A similar control may date back to the early Oligocene but has to be confirmed by further studies. Latest Miocene-early Pliocene organic carbon deposition was closely linked to the evolution of the African trade winds, continental upwelling in the eastern Equatorial Atlantic, ocean chemistry and eustatic sea level fluctuations. Reduction in carbonate carbon preservation associated with enhanced carbon dissolution is recorded in the uppermost Miocene (5.82-5.2 Ma) section and suggests that the latest Miocene carbon record of Site 959 documents the influence of corrosive deep waters which formed in response to the Messinian Salinity Crisis. Furthermore, sea level-related displacement of higher productive areas towards the West African shelf edge is indicated at 5.65, 5.6, 5.55, 5.2, 4.8 Ma. In view of humid conditions in tropical Africa and a strong West African monsoonal system around the Miocene-Pliocene transition, the onset of pronounced TOC cycles at about 5.6 Ma marks the first establishment of upwelling cycles in the northern Gulf of Guinea. An amplification in organic carbon deposition at 3.3 Ma and 2.45 Ma links organic sedimentation in the tropical eastern Equatorial Atlantic to the main steps of northern hemisphere glaciation and testifies to the late Pliocene transition from humid to arid conditions in central and western African climate. Aridification of central Africa around 2.8 Ma is not clearly recorded at Site 959. However, decreased and highly fluctuating carbonate carbon concentrations are observed from 2.85 Ma on that may relate to enhanced terrigenous (eolian) dilution from Africa.
Resumo:
Stable carbon isotope fractionation (%) of 7 marine phytoplankton species grown in different irradiance cycles was measured under nutrient-replete conditions at a high light intensity in batch cultures. Compared to experiments under continuous light, all species exhibited a significantly higher instantaneous growth rate (pi), defined as the rate of carbon fixation during the photo period, when cultivated at 12:12 h. 16:8 h, or 186 h light:dark (L/D) cycles. Isotopic fractionation by the diatoms Skeletonema costatum, Asterionella glacialis, Thalassiosira punctigera, and Coscinodiscus wailesii (Group I) was 4 to 6% lower in a 16:8 h L/D cycle than under continuous light, which we attribute to differences in pi. In contrast, E, in Phaeodactylum tn'cornutum, Thalassiosira weissflogii, and in the dinoflagellate Scrippsiella trochoidea (Group 11) was largely insensitive to day length-related differences in instantaneous growth rate. Since other studies have reported growth-rate dependent fractionation under N-limited conditions in P. tricornutum, pi-related effects on fractionation apparently depend on the factor controlling growth rate. We suggest that a general relationship between E, and pi/[C02,,,] may not exist. For 1 species of each group we tested the effect of variable CO2 concentration, [COz,,,], on isotopic fractionation. A decrease in [CO2,,,] from ca 26 to 3 pm01 kg-' caused a decrease in E, by less than 3%0 This indicates that variation in h in response to changes in day length has a similar or even greater effect on isotopic fractionation than [COz,,,] m some of the species tested. In both groups E, tended to be higher in smaller species at comparable growth rates. In 24 and 48 h time series the algal cells became progressively enriched in 13C during the day and the first hours of the dark period, followed by l3C depletion in the 2 h before beginning of the following Light period. The daily amplitude of the algal isotopic composition (613C), however, was <1.5%0, which demonstrates that diurnal variation in Fl3C is relatively small.