263 resultados para eastnortheast of Simbiri Island, New Ireland Basin, Papua New Guinea
Resumo:
During Ocean Drilling Program (ODP) Leg 180, 11 sites were drilled in the vicinity of the Moresby Seamount to study processes associated with the transition from continental rifting to seafloor spreading in the Woodlark Basin. This paper presents thermochronologic (40Ar/39Ar, 238U/206Pb, and fission track) results from igneous rocks recovered during ODP Leg 180 that help constrain the latest Cretaceous to present-day tectonic development of the Woodlark Basin. Igneous rocks recovered (primarily from Sites 1109, 1114, 1117, and 1118) consist of predominantly diabase and metadiabase, with minor basalt and gabbro. Zircon ion microprobe analyses gave a 238U/206Pb age of 66.4 ± 1.5 Ma, interpreted to date crystallization of the diabase. 40Ar/39Ar plagioclase apparent ages vary considerably according to the degree to which the diabase was altered subsequent to crystallization. The least altered sample (from Site 1109) yielded a plagioclase isochron age of 58.9 ± 5.8 Ma, interpreted to represent cooling following intrusion. The most altered sample (from Site 1117) yielded an isochron age of 31.0 ± 0.9 Ma, interpreted to represent a maximum age for the timing of subsequent hydrothermal alteration. The diabase has not been thermally affected by Miocene-Pliocene rift-related events, supporting our inference that these rocks have remained at shallow and cool levels in the crust (i.e., upper plate) since they were partially reset as a result of middle Oligocene hydrothermal alteration. These results suggest that crustal extension in the vicinity of the Moresby Seamount, immediately west of the active seafloor spreading tip, is being accommodated by normal faulting within latest Cretaceous to early Paleocene oceanic crust. Felsic clasts provide additional evidence for middle Miocene and Pliocene magmatic events in the region. Two rhyolitic clasts (from Sites 1110 and 1111) gave zircon 238U/206Pb ages of 15.7 ± 0.4 Ma and provide evidence for Miocene volcanism in the region. 40Ar/39Ar total fusion ages on single grains of K-feldspar from these clasts yielded younger apparent ages of 12.5 ± 0.2 and 14.4 ± 0.6 Ma due to variable sericitization of K-feldspar phenocrysts. 238U/206Pb zircon, 40Ar/39Ar K-feldspar and biotite total fusion, and apatite fission track analysis of a microgranite clast (from Site 1108) provide evidence for the existence of a rapidly cooled 3.0 to 1.8 Ma granitic protolith. The clast may have been transported longitudinally from the west (e.g., from the D'Entrecasteaux Islands). Alternatively, it may have been derived from a more proximal, but presently unknown, source in the vicinity of the Moresby Seamount.
Resumo:
Lake George, New York, is the site of a new discovery of iron-manganese nodules. These nodules occur at a water depth between 21 and 36 m along a stretch of lake extending for about 5 mi north and south of the Narrows, a constricted island-dotted area which separates the north and south Lake George basins. Nodules occur on or within the uppermost 5 cm of a varved glacial clay. Some areas are solidly floored with a carpet of nodules in areas where active currents keep the nodules exposed. The nodules form around nuclei which consist of clay and less commonly of spore capsules, detrital particles, or bark. By their shape we recognize three types of nodules: spherical, discoidal, and lumps. On X-ray examination all nodules show small goethite peaks; in one nodule the manganese mineral birnessite was identified. Manganese and part of the iron appears to be in X-ray amorphous ferromanganese compounds. The Lake George nodules are enriched in iron with respect to marine nodules but are lower in manganese. They have a higher trace element concentration than nodules from other known freshwater lake occurrences, but a lower concentration than marine nodules.
Resumo:
Three complementary imaging techniques were used to describe a complex rosette-shaped microboring that penetrates the shells of brachiopods from the OrdovicianSilurian shallow marine limestones of Anticosti Island, Canada. Pyrodendrina cupra n. igen. and isp. is among the oldest dendrinid microborings and consists of shallow and deep penetrating canals that radiate from a central polygonal chamber. The affinity of the tracemaker is unknown, but a foraminiferal origin, as proposed for some dendrinid borings, is rejected. Combining microCT with traditional stereomicroscopy and SEM helped distinguish and quantify fine morphological features while maintaining contextual information of the microboring within the shell substrate. Different imaging techniques inherently bias the description of microborings. These biases must be accounted for as new methods in ichnotaxonomy are integrated with past research based on different methods.
Resumo:
Seagrass meadows are a crucial component of tropical marine reef ecosystems. The seagrass plants are colonized by a multitude of epiphytic organisms that contribute to determining the ecological role of seagrasses. To better understand how environmental changes like ocean acidification might affect epiphytic assemblages, the microbial community composition of the epiphytic biofilm of Enhalus acroides was investigated at a natural CO2 vent in Papua New Guinea using molecular fingerprinting and next generation sequencing of 16S and 18S rRNA genes. Both bacterial and eukaryotic epiphytes formed distinct communities at the CO2-impacted site compared to the control site. This site-related CO2 effect was also visible in the succession pattern of microbial epiphytes. We further found an increased abundance of bacterial types associated with coral diseases at the CO2-impacted site (Fusobacteria, Thalassomonas) whereas eukaryotes such as certain crustose coralline algae commonly related to healthy reefs were less diverse. These trends in the epiphytic community of E. acroides suggest a potential role of seagrasses as vectors of coral pathogens and may support previous predictions of a decrease in reef health and prevalence of diseases under future ocean acidification scenarios.
Resumo:
Natural CO2 venting systems can mimic conditions that resemble intermediate to high pCO2 levels as predicted for our future oceans. They represent ideal sites to investigate potential long-term effects of ocean acidification on marine life. To test whether microbes are affected by prolonged exposure to pCO2 levels, we examined the composition and diversity of microbial communities in oxic sandy sediments along a natural CO2 gradient. Increasing pCO2 was accompanied by higher bacterial richness and by a strong increase in rare members in both bacterial and archaeal communities. Microbial communities from sites with CO2 concentrations close to today's conditions had different structures than those of sites with elevated CO2 levels. We also observed increasing sequence abundance of several organic matter degrading types of Flavobacteriaceae and Rhodobacteraceae, which paralleled concurrent shifts in benthic cover and enhanced primary productivity. With increasing pCO2, sequences related to bacterial nitrifying organisms such as Nitrosococcus and Nitrospirales decreased, and sequences affiliated to the archaeal ammonia-oxidizing Thaumarchaeota Nitrosopumilus maritimus increased. Our study suggests that microbial community structure and diversity, and likely key ecosystem functions, may be altered in coastal sediments by long-term CO2 exposure to levels predicted for the end of the century.