190 resultados para carbon source
Resumo:
There is generally a lack of knowledge on how marine organic carbon accumulation is linked to vertical export and primary productivity patterns. In this study, a multi-proxy geochemical and organic-sedimentological approach is coupled with organic facies modelling focusing on regional calculations of carbon cycling and carbon burial on the western Barents Shelf between northern Scandinavia and Svalbard. OF-Mod 3D, an organic facies modelling software tool, is used to reconstruct the marine and terrestrial organic carbon fractions and to make inferences about marine primary productivity in this region. The model is calibrated with an extensive sample dataset and reproduces the present-day regional distribution of the organic carbon fractions well. Based on this new organic facies model, we present regional carbon mass accumulation rate calculations for the western Barents Sea. The calibration dataset includes location and water depth, sand fraction, organic carbon and nitrogen data and calculated marine and terrestrial organic carbon fractions.
Resumo:
A summary of shipboard Rock-Eval measurements shows that organic matter in Upper Triassic siltstone from the Wombat Plateau is dominated by Type III kerogen and is thermally immature. Neocomian siltstone from the Exmouth Plateau similarly contain thermally immature Type III organic matter. Overlying Upper Cretaceous to Quaternary carbonates are poor in organic matter at both locations, yet significant amounts of methane-dominated gas are dissolved in the pore waters of the thick carbonate sequence present on the Exmouth Plateau. This dry gas is believed to have migrated from deeper and more mature strata containing Type III kerogen.
Resumo:
Clay mineralogy and geotechnical properties of Tarras clay, basin clays and tills from some parts of Schleswig-Holstein: Tarras clay of lower Eocene age, Quaternary till containing various admixtures of Tarras clay as well as basin clay and varve-clay from Schleswig-Holstein were investigated. Grain size distribution and soil mechanic characteristics were determined, which indicated different geotechnical properties for each sediment type.
Resumo:
We combined the analysis of sediment trap data and satellite-derived sea surface chlorophyll to quantify the amount of organic carbon export to the deep sea in the upwelling induced high production area off northwest Africa. In contrast to the generally global or basin-wide adoption of export models, we used a regionally fitted empirical model. Furthermore, the application of our model was restricted to a dynamically defined region of high chlorophyll concentration in order to restrict the model application to an environment of more homogeneous export processes. We developed a correlation-based approximation to estimate the surface source area for a sediment trap deployed from 11 June 1998 to 7 November 1999 at 21.25°N latitude and 20.64°W longitude off Cape Blanc. We also developed a regression model of chlorophyll and export of organic carbon to the 1000 m depth level. Carbon export was calculated for an area of high chlorophyll concentration (>1 mg/m**3) adjacent to the coast on a daily basis. The resulting zone of high chlorophyll concentration was 20,000-800,000 km**2 large and yielded a yearly export of 1.123 to 2.620 Tg organic carbon. The average organic carbon export within the area of high chlorophyll concentration was 20.6 mg/m**2d comparable to 13.3 mg/m**2d as found in the sediment trap results if normalized to the 1000 m level. We found strong interannual variability in export. The period autumn 1998 to summer 1999 was exceeding the mean of the other three comparable periods by a factor of 2.25. We believe that this approach of using more regionally fitted models can be successfully transferred even to different oceanographic regions by selecting appropriate definition criteria like chlorophyll concentration for the definition of an area to which it is applicable.
Resumo:
Through the processes of the biological pump, carbon is exported to the deep ocean in the form of dissolved and particulate organic matter. There are several ways by which downward export fluxes can be estimated. The great attraction of the 234Th technique is that its fundamental operation allows a downward flux rate to be determined from a single water column profile of thorium coupled to an estimate of POC/234Th ratio in sinking matter. We present a database of 723 estimates of organic carbon export from the surface ocean derived from the 234Th technique. Data were collected from tables in papers published between 1985 and 2013 only. We also present sampling dates, publication dates and sampling areas. Most of the open ocean Longhurst provinces are represented by several measurements. However, the Western Pacific, the Atlantic Arctic, South Pacific and the South Indian Ocean are not well represented. There is a variety of integration depths ranging from surface to 220m. Globally the fluxes ranged from -22 to 125 mmol of C/m**2/d. We believe that this database is important for providing new global estimate of the magnitude of the biological carbon pump.
Resumo:
The early Eocene represents a time of major changes in the global carbon cycle and fluctuations in global temperatures on both short- and long-time scales. These perturbations of the ocean-atmosphere system have been linked to orbital forcing and changes in net organic carbon burial, but accurate age models are required to disentangle the various forcing mechanisms and assess causal relationships. Discrepancies between the employed astrochronological and radioisotopic dating techniques prevent the construction of a robust time frame between ~49 and ~54 Ma. Here we present an astronomically tuned age model for this critical time period based on a new high-resolution benthic d13C record of ODP Site 1263, SE Atlantic. First, we assess three possible tuning options to the stable long-eccentricity cycle (405-kyr), starting from Eocene Thermal Maximum 2 (ETM2, ~54 Ma). Next we compare our record to the existing bulk carbonate d13C record from the equatorial Atlantic (Demerara Rise, ODP Site 1258) to evaluate our three initial age models and compare them with alternative age models previously established for this site. Finally, we refine our preferred age model by expanding our tuning to the 100-kyr eccentricity cycle of the La2010d solution. This solution appears to accurately reflect the long- and short-term eccentricity-related patterns in our benthic d13C record of ODP Site 1263 back to at least 52 Ma and possibly to 54 Ma. Our time scale not only aims to provide a new detailed age model for this period, but it may also serve to enhance our understanding of the response of the climate system to orbital forcing during this super greenhouse period as well as trends in its background state.