477 resultados para ZIRCONIUM GRAVIMETRY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-pressure/low-temperature metabasites occupy a definite geological position within the structure of the Polar Urals and have a very important bearing on the understanding of the early history of the Ural Mountains. Recently obtained geological, petrographic, geochemical and isotope data allow some conclusions on this history. The metabasites of the Khord"yus and Dzela complexes contain relics of a Neoproterozoic (578 ±8 Ma) oceanic crust. This crust formed part of the base of the early Paleozoic (500 Ma) ensimatic island arc and experienced Ca-Al-Si±Na metasomatism and, probably, partial melting with the formation of boninite melts. However, so far no boninite volcanics have been found. The metabasites at the base of the island arc took part in the collision and as a consequence experienced glaucophane schist and greenschist facies metamorphism during the collision and obduction over the passive Baltic margin 350 ±11 Ma ago.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Major and trace elements, mineral chemistry, and Sr-Nd isotope ratios are reported for representative igneous rocks of Ocean Drilling Program Sites 767 and 770. The basaltic basement underlying middle Eocene radiolarianbearing red clays was reached at 786.7 mbsf and about 421 mbsf at Sites 767 and 770, respectively. At Site 770 the basement was drilled for about 106 m. Eight basaltic units were identified on the basis of mineralogical, petrographical, and geochemical data. They mainly consist of pillow lavas and pillow breccias (Units A, B, D, and H), intercalated with massive amygdaloidal lavas (Units Cl and C2) or relatively thin massive flows (Unit E). Two dolerite sills were also recognized (Units F and G). All the rocks studied show the effect of low-temperature seafloor alteration, causing almost total replacement of olivine and glass. Calcite, clays, and Fe-hydroxides are the most abundant secondary phases. Chemical mobilization due to the alteration processes has been evaluated by comparing elements that are widely considered mobile during halmyrolysis (such as low-field strength elements) with those insensitive to seafloor alteration (such as Nb). In general, MgO is removed and P2O5 occasionally enriched during the alteration of pillow lavas. Ti, Cs, Li, Rb, and K, which are the most sensitive indicators of rock/seawater interaction, are generally enriched. The most crystalline samples appear the least affected by chemical changes. Plagioclase and olivine are continuously present as phenocrysts, and clinopyroxene is confined in the groundmass. Textural and mineralogical features as well as crystallization sequences of Site 770 rocks are, in all, analogous to typical mid-ocean-ridge basalts (MORBs). Relatively high content of compatible trace elements, such as Ni and Cr, indicate that these rocks represent nearly primitive or weakly fractionated MORBs. All the studied rocks are geochemically within the spectrum of normal MORB compositional variation. Their Sr/Nd isotopic ratios plot on the mantle array (87Sr/87Sr 0.70324-0.70348 with 143Nd/144Nd 0.51298-0.51291) outside the field of Atlantic and Pacific MORBs. However, Sr and Nd isotopes are typical of both Indian Ocean MORBs and of some back-arc basalts, such as those of Lau Basin. The mantle source of Celebes basement basalts does not show a detectable influence of a subduction-related component. The geochemical and isotopic data so far obtained on the Celebes basement rocks do not allow a clear discrimination between mid-ocean ridge and back-arc settings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Layered Fe-Mn crusts from the off-axis region of the first segment of the Central Indian Ridge north of the Rodrigues Triple Junction were studied geochemically and mineralogically. Vernadite (delta-MnO2) is the main mineral oxide phase. 230Thxs and Co concentrations suggest high growth rates of up to 29 mm/Myr and a maximum age of the basal crust layer of 1 Ma. Whereas most of the major and minor elements show concentrations which are typical of hydrogenetic formation, Co, Pb, Ni and Ti concentrations are strikingly lower. Concentrations and distribution of the strictly trivalent rare-earths and yttrium (REY) are typical of hydrogenetic ferromanganese oxide precipitates, but in marked contrast, the crusts are characterized by negative CeSN (shale normalized) anomalies and (Ce/Pr)SN ratios less than unity. Profiles through the crusts reveal only minor variations of the REY distribution and (Ce/Pr)SN ratios range from 0.45 to 0.68 (compared to ratios of up to 2 for typical hydrogenetic crusts from the Central Indian Basin). The apparent bulk partition coefficients between the crusts and seawater suggest that for the strictly trivalent REY the adsorption-desorption equilibrium has been reached. Positive Ce anomalies in the partition coefficient patterns reveal preferential uptake of Ce, but to a lesser extent than in normal hydrogenetic crusts. A new parameter (excess Ce, Cexs) to quantify the degree of decoupling of Ce from REY(III) is established on the basis of partition coefficients. Cexs/Cebulk ratios suggest that the CIR crusts formed by precipitation of Fe-Mn oxides from a hydrothermal plume and that in hydrothermal plumes and normal seawater the enrichment of Ce results from the same oxidative sorption process. The growth rates, calculated with 230Thxs data as well as with the Co formula, are inversely related to Cexs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Leg 136 drilling was conducted at two sites in pelagic sediments of the north central Pacific Ocean. In this report, pore-water analyses for major seawater constituents, alkalinity, ammonia, nitrate, phosphate, silica, Ba, Fe, Li, Mn, and Sr are presented. Although concentration gradients are generally weak, resulting from slow sedimentation and concomitant diffusive communication with overlying water, there is evidence of sediment/pore-water interactions, associated sediment diagenesis, and formation of authigenic minerals. Bulk major and trace element compositions of the sediments are consistent with reactions inferred to occur within the sediments and with the lithology and mineralogy. Elemental compositions of the sediments are not strongly affected by diagenesis and are primarily related to the dominant mineralogy. Sediments are typical of deep ocean pelagic settings with a significant contribution from the alteration of volcanic ash and the formation of zeolites. Sedimentary rare earth element patterns also provide evidence of active scavenging processes by Mn and Fe oxide phases in the deeper sediments at Site 842.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Basalt samples recovered from the lowermost 37 m of Leg 105 Hole 647A in the Labrador Sea are fine- to medium grained, have microphenocrysts of clinopyroxene, and show little evidence of alteration. Chemically, these rocks are low potassium (0.01-0.09 wt% K20), olivine- to quartz-normative tholeiites that are also depleted in other incompatible elements. In terms of many of the incompatible trace elements, the Labrador Sea samples are similar both to iV-type midocean ridge basalts (MORBs) and to the terrestrial Paleocene volcanic rocks in the Davis Strait region of Baffin Island and West Greenland. However, significant differences are found in their strontium and neodymium isotope systematics. Hole 647A samples are more depleted in epsilon-Nd (+9.3) and are anomalously rich in 87Sr/86Sr (0.7040) relative to the Davis Strait basalts (epsilon-Nd +2.54 to + 8.97; mean 87Sr/86Sr, 0.7034). We conclude that the Hole 647A and Davis Strait basalts may have been derived from a similar depleted mantle source composition. In addition, the Davis Strait magmas were generated from mantle of more than one composition. We also suggest that there is no geochemical evidence from the Hole 647A samples to support or to refute the existence of foundered continental crust in the Labrador Sea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lower Cretaceous sediments are frequently characterized by a well expressed cyclicity. While the processes influencing environments above the carbonate compensation depth (CCD) are reasonably well understood, almost nothing is known about the deep ocean. Cretaceous sub-CCD sediments from the Tethys and Atlantic Oceans typically show rhythmic black/green shale successions. To gain insight into the nature of these black/green shale cycles, we performed detailed geochemical analyses (X-ray fluorescence, Rock-Eval and reactive iron analysis) on a 3 m long section of latest Aptian age. The major-element distribution of the analyzed shale sequence indicates a periodic change from a high-productivity and well-oxygenated green shale mode to a low-productivity oxygen-deficient black shale mode. It is proposed here that the preservation of organic matter was dependent on the strength of salinity-driven deepwater generation. Furthermore, the data show that the Corg content covaries with changes in the detrital composition. Therefore we hypothesize that Tethyan deepwater circulation was sensitive to changes in the monsoonal system. Time series analysis suggests that these changes are periodic in nature, although we are currently unable to prove that the dominant periodicity is related to the precession component of the Milankovitch frequencies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hot brines in depressions of the central Red Sea contain thousands of times more iron, manganese and other metals than . After removal of salts, approximately half of sediments from these depressions consists of iron hydroxides and they are enriched in zinc, copper, lead and molybdenum. Hydrothermal deposits with the same complex of metals, located along the coast of the Red Sea, are correlated with faults and may be due to occurrences of Tertiary volcanism. Brines of similar composition are known in the Cheleken Peninsula. Certain geological and geochemical data indicate that such brines are of relatively deep origin.