167 resultados para Terrestrial, freshwater and marine ecology
(Table 5) Reservoir ages in 14C years BP and reservoir age offsets DR for ODP Hole 169-1034C samples
Resumo:
Selective degradation of organic matter in sediments is important for reconstructing past environments and understanding the carbon cycle. Here, we report on compositional changes between and within lipid classes and kerogen types (represented by palynomorph groups) in relation to the organic matter flux to the sea floor and oxidation state of the sediments since the early Holocene for central Eastern Mediterranean site ABC26. This includes the initially oxic but nowadays anoxic presapropelic interval, the still unoxidised lower part of the organic rich S1 sapropel, its postdepositionally oxidised and nowadays organic-poor upper part as well as the overlying postsapropelic sediments which have always been oxic. A general ~ 2.3 times increase in terrestrial and marine input during sapropel formation is estimated on the basis of the total organic carbon (TOC), pollen, spore, dinoflagellate cyst, n-alkane, n-alkanol and n-alkanoic acid concentration changes in the unoxidised part of the sapropel. The long-chain alkenones, 1,15 diols and keto-ols, loliolides and sterols indicate that some plankton groups, notably dinoflagellates, may have increased much more. Apart from the terrestrial and surface water contributions to the sedimentary organic matter, anomalous distributions and preservation of some C23-C27 alkanes, alkanols and alkanoic acids have been observed, which are interpreted as a contribution by organisms living in situ. Comparison of the unoxidised S1 sapropel with the overlying oxidised sapropel and the organic matter concentration profiles in the oxidised postsapropelic sediments demonstrates strong and highly selective aerobic degradation of lipids and palynomorphs. There seems to be a fundamental difference in degradation kinetics between lipids and pollen which may be possibly related with the absence of sorptive preservation as a protective mechanism for palynomorph degradation. The n-alkanes, Impagidinium, and Nematosphaeropsis are clearly more resistant than TOC. The n-alkanols and n-carboxylic acids are about equally resistant whereas the pollen, all other dinoflagellate cysts and other lipids appear to degrade considerably faster, which questions the practice of normalising to TOC without taking diagenesis into account. Selective degradation also modifies the relative distributions within lipid classes, whereby the longer-chain alkanes, alcohols and fatty acids disappear faster than their shorter-chain equivalents. Accordingly, interpretation of lipid and palynomorph assemblages in terms of pre- or syndepositional environmental change should be done carefully when proper knowledge of the postdepositional preservation history is absent. Two lipid-based preservation proxies are tested the diol-keto-ol oxidation index based on the 1,15C30 diol and keto-ols (DOXI) and the alcohol preservation index (API) whereby the former seems to be the most promising.
Resumo:
Pliocene and Pleistocene sediments from ODP Hole 647A in the south central Labrador Sea and Hole 646B off southwest Greenland were sampled at 1.5-m intervals for studies of terrestrial and marine palynomorphs, including pollen, spores, dinocysts, and acritarchs. The dinocyst assemblages suggest that surface-water masses were cool-temperate to subarctic during most of the Pliocene and Pleistocene. The occurrence of a few warm-temperate indicators, notably Impagidinium species and Polyspaeridium zoharyi, suggests almost continuous northward advection of warm North Atlantic Drift into the Labrador Sea. A major decrease in dinocyst diversity and abundance marks the late Pliocene to early Pleistocene interval. The abundance of acritarchs in Pliocene sediments off southwest Greenland suggests high productivity, which may reflect nutrient flux from the shelf or upwelling; productivity appears to have been much lower at the central Labrador Sea site. Pollen and spore concentrations also decrease from the late Pliocene to early Pleistocene. This diminution probably reflects the impoverishment of vegetation and southward migration of the eastern Canadian tree line at the onset of climatic cooling and glaciation.
Resumo:
The organic facies of Early and middle Cretaceous sediments drilled at DSDP Site 534 is dominated by terrestrially derived plant remains and charcoal. Marine organic matter is mixed with the terrestrial components, but through much of this period was diluted by the terrestrial material. The supply of terrestrial organic matter was high here because of the nearness of the shore and high runoff promoted by a humid temperate coastal climate. Reducing conditions favored preservation of both marine and terrestrial organic matter, the terrestrial materials having reached the site mostly in turbidity currents or in the slow-moving, near-bottom nepheloid layer. An increase in the abundance of terrestrial organic matter occurred when the sea level dropped in the Valanginian and again in the Aptian-Albian, because rivers dumped more terrigenous elastics into the Basin and marine productivity was lower at these times than when sea level was high. A model is proposed to explain the predominance of reducing conditions in the Valanginian-Aptian, of oxidizing conditions in the late Aptian, and of reducing conditions in the Albian-Cenomanian. The model involves influx of oxygen-poor subsurface waters from the Pacific at times of high or rising sea level (Valanginian-Aptian, and Albian- Cenomanian) and restriction of that influx at times of low sea level (late Aptian). In the absence of a supply of oxygenpoor deep water, the bottom waters of the North Atlantic became oxidizing in the late Aptian, probably in response to development of a Mediterranean type of circulation. The influx of nutrients from the Pacific led to an increase in productivity through time, accounting for an increase in the proportion of marine organic matter from the Valanginian into the Aptian and from the Albian to the Cenomanian. Conditions were dominantly oxidizing through the Middle Jurassic into the Berriasian, with temporary exceptions when bottom waters became reducing, as in the Callovian. Mostly terrestrial and some marine organic matter accumulated during the Callovian reducing episode. When Jurassic bottom waters were oxidizing, only terrestrial organic matter was buried in the sediments, in very small amounts.
Resumo:
The late Quaternary palaeoenvironmental history of the southern Windmill Islands, East Antarctica, has been reconstructed using diatom assemblages from two long, well-dated sediment cores taken in two marine bays. The diatom assemblage of the lowest sediment layers suggests a warm climate with mostly open water conditions during the late Pleistocene. During the following glacial, the Windmill Islands were covered by grounded ice preventing any in situ bioproductivity. Following deglaciation, a sapropel with a well-preserved diatom assemblage was deposited from ~10?500 cal yr BP. Between ~10?500 and ~4000 cal yr BP, total organic carbon (Corg) and total diatom valve concentrations as well as the diatom species composition suggest relatively cool summer temperatures. Hydrological conditions in coastal bays were characterised by combined winter sea-ice and open water conditions. This extensive period of glacial retreat was followed by the Holocene optimum (~4000 to ~1000 cal yr BP), which occurred later in the southern Windmill Islands than in most other Antarctic coastal regions. Diatom assemblages in this period suggest ice-free conditions and meltwater-stratified waters in the marine bays during summer, which is also reflected in high proportions of freshwater diatoms in the sediments. The diatom assemblage in the upper sediments of both cores indicates Neoglacial cooling from ~1000 cal yr BP, which again led to seasonally persistent sea-ice on the bays. The Holocene optimum and cooling trends in the Windmill Islands did not occur contemporaneously with other Antarctic coastal regions, showing that the here presented record reflects partly local environmental conditions rather than global climatic trends.