662 resultados para Suboxic Sediment Layer
Resumo:
In order to study late Holocene changes in sediment supply into the northern Arabian Sea, a 5.3 m long gravity core was investigated by high-resolution geochemical and mineralogical techniques. The sediment core was recovered at a water depth of 956 m from the continental slope off Pakistan and covers a time span of 5 kyr. During the late Holocene source areas delivering material to the sampling site did, however, not change and were active throughout the year.
Resumo:
One hundred thirty-one marker horizons relating to the distinct and traceable layers were described for the Owen Ridge and Oman Margin sites. The correlations incorporated the calculations of true depth, corrected for coring disturbance and gas expansion. Intersite correlation of marker horizons has been improved based on color density data, measured with video densitometer, and oxygen isotope stratigraphic data. Distinct hiatuses were detected by the intersite correlation of the marker horizons in the Owen Ridge. The hiatuses are related to submarine slides induced by increasing gravitational instability for the accumulation of the pelagic sediments on the top of the Owen Ridge. The large amount of sediment supply with variable lithofacies during the glacial stages is represented by layer-bylayer correlation in the Oman Margin. The color density patterns with glacial-interglacial cycles are controlled by the balance of organic carbon content, increasing in the interglacial stages with strong upwelling induced by the southwest monsoon, and flux of terrigenous matter, increasing in the glacial stages. The present distinct climatic cycle relating to the southwest monsoon has been developed since Stage 8, 250 ka. The large amount of sediment supply in the glacial stages can be assumed as fluvial in origin from the humid Arabian Peninsula, relating to the weakened Tropical Easterly Jet, which is induced by the counter-current of the southwest monsoon and maintains the present arid climate in the north Africa and Arabian Peninsula.
Resumo:
Digitized records of optical desnity in many North Atlantic cores exihibt rapid changes from lighter to darker extrems, typically within less than 200 years, at the 5d/5e, 5b/5c and 4/5 boundaries. In cores from DSDP site 609 the changes from lighter to darker color coincide with increasing in relative abundance of Neogloboquadrina pachyderma (l.c.), with increases in abundances of lithic grains and with decreasing in carbonate content. The rapid changes to dark color, therefore, are climate-driven and correspond to a lowering of seas surface temperatures and to increases in amounts of ice rafted debris relative to biogenic carbonate. At the 5d&4c boundary, delta18O in N. pachyderma (l.c.) increases abruptly with the change to darker sediments as expected for cooler sea surface temperatures. At the 4/5 boundary, however, delta18O decreases with the change to darker sediment and cooler sea surface temperatures, suggesting that a layer of fresh surface water was present in the North Atlantic at that time.
Resumo:
We present sea surface temperature (SST) estimates based on the relative abundances of long-chain C37 alkenones (UK37') in four sediment cores from a transect spanning the subtropical to subantarctic waters across the subtropical front east of New Zealand. SST estimates from UK37' are compared to those derived from foraminiferal assemblages (using the modern analog technique) in two of these cores. Reconstructions of SST in core tops and Holocene sediments agree well with modern average summer temperatures of ~18°C in subtropical waters and ~14°C in subpolar waters, with a 4°-5°C gradient across the front. Down core UK37' SST estimates indicate that the regional summer SST was 4°-5°C cooler during the last glaciation with an SST of ~10°C in subpolar waters and an SST of ~14°C in subtropical waters. Temperature reconstructions from foraminiferal assemblages agree with those derived from alkenones for the Holocene. In subtropical waters, reconstructions also agree with a glacial cooling of 4° to ~14°C. In contrast, reconstructions for subantarctic pre-Holocene waters indicate a cooling of 8°C with glacial age warm season water temperatures of ~6°C. Thus the alkenones suggest the glacial temperature gradient across the front was the same or reduced slightly to 3.5°-4°C, whereas foraminiferal reconstructions suggest it doubled to 8°C. Our results support previous work indicating that the STF remained fixed over the Chatham Rise during the Last Glacial Maximum. However, the differing results from the two techniques require additional explanation. A change in euphotic zone temperature profiles, seasonality of growth, or preferred growth depth must have affected the temperatures recorded by these biologically based proxies. Regardless of the specific reason, a differential response to the environmental changes between the two climate regimes by the organisms on which the estimates are based suggests increased upwelling associated with increased winds and/or a shallowing of the thermocline associated with increased stratification of the surface layer in the last glaciation.
Resumo:
Submarine brine lakes feature sharp and persistent concentration gradients between seawater and brine, though these should be smoothed out by free diffusion in open ocean settings. The anoxic Urania basin of the Eastern Mediterranean contains an ultra sulfidic, hypersaline brine of Messinian origin above a thick layer of suspended sediments. With a dual modeling approach we reconstruct its contemporary stratification by geochemical solute transport fundamentals, and show that thermal convection is required to maintain mixing in the brine and mud layer. The origin of the Urania basin stratification was dated to 1650 years before present, which may be linked to a major earthquake in the region. The persistence of the chemoclines may be key to the development of diverse and specialized microbial communities. Ongoing thermal convection in the fluid mud layer may have important, yet unresolved consequences for sedimentological and geochemical processes, also in similar environments.
Resumo:
Intervals of organic C- and carbonate-rich laminated sediments occur in the Sea of Japan with roughly the same frequency as temperature changes observed in Greenland ice cores, providing clear evidence of rapid oceanographic change during the past 36 kyr. Planktonic foraminiferal d18O data suggest that only the laminated sediments deposited during the Last Glacial Maximum (LGM), and perhaps one other interval formed during a period of increased water column stratification. Sedimentary Re and Mo data are consistent with bottom waters that were sulfidic during the LGM and suboxic during other laminated intervals. Results of a numerical model of Corg and Re burial are consistent with a mechanism whereby an increased Corg flux to the seafloor drove oxygen concentrations toward depletion during times of deposition of the suboxic laminated intervals. Such a process could have resulted from increased upwelling driven either by increased deep water formation due to colder and/or more saline surface waters or by stronger northeasterly monsoonal winds.
Resumo:
We present tools for rapid and quantitative detection of sediment lamination. The BMPix tool extracts color and gray-scale curves from images at pixel resolution. The PEAK tool uses the gray-scale curve and performs, for the first time, fully automated counting of laminae based on three methods. The maximum count algorithm counts every bright peak of a couplet of two laminae (annual resolution) in a smoothed curve. The zero-crossing algorithm counts every positive and negative halfway-passage of the curve through a wide moving average, separating the record into bright and dark intervals (seasonal resolution). The same is true for the frequency truncation method, which uses Fourier transformation to decompose the curve into its frequency components before counting positive and negative passages. We applied the new methods successfully to tree rings, to well-dated and already manually counted marine varves from Saanich Inlet, and to marine laminae from the Antarctic continental margin. In combination with AMS14C dating, we found convincing evidence that laminations in Weddell Sea sites represent varves, deposited continuously over several millennia during the last glacial maximum. The new tools offer several advantages over previous methods. The counting procedures are based on a moving average generated from gray-scale curves instead of manual counting. Hence, results are highly objective and rely on reproducible mathematical criteria. Also, the PEAK tool measures the thickness of each year or season. Since all information required is displayed graphically, interactive optimization of the counting algorithms can be achieved quickly and conveniently.
Resumo:
In October 1979, a period of heavy rainfall along the French Riviera was followed by the collapse of the Ligurian continental slope adjacent to the airport of Nice, France. A body of slope sediments, which was shortly beforehand affected by construction work south of the airport, was mobilized and traveled hundreds of kilometers downslope into the Var submarine canyon and, eventually, into the deep Ligurian basin. As a direct consequence, the construction was destroyed, seafloor cables were torn, and a small tsunami hit Antibes shortly after the failure. Hypotheses regarding the trigger mechanism include (i) vertical loading by construction of an embankment south of the airport, (ii) failure of a layer of sensitive clay within the slope sequence, and (iii) excess pore fluid pressures from charged aquifers in the underground. Over the previous decades, both the sensitive clay layers and the permeable sand and gravel layers were sampled to detect freshened waters. In 2007, the landslide scar and adjacent slopes were revisited for high-resolution seafloor mapping and systematic sampling. Results from half a dozen gravity and push cores in the shallow slope area reveal a limited zone of freshening (i.e. groundwater influence). A 100-250 m wide zone of the margin shows pore water salinities of 5-50% SW concentration and depletion in Cl, SO4, but Cr enrichment, while cores east or west of the landslide scar show regular SW profiles. Most interestingly, the three cores inside the landslide scar hint towards a complex hydrological system with at least two sources for groundwater. The aquifer system also showed strong freshening after a period of several months without significant precipitation. This freshening implies that charged coarse-grained layers represent a permanent threat to the slope's stability, not just after periods of major rainfall such as in October 1979.
Resumo:
High-resolution climatic records of the late Holocene along the north-west African continental margin are scarce. Here we combine sediment grain size, elemental distribution and mineral assemblage data to trace dust and riverine sources at a shallow-marine sediment depocentre in the vicinity of the Senegal River mouth. The aim is to understand how these terrigenous components reflect climate variability during the late Holocene. Major element contents were measured and mineral identification was performed on three sub-fractions of our sediment core: (i) fluvial material <2 µm, (ii) aeolian material of 18-63 µm and (iii) a sub-fraction of dual-origin material of 2-18 µm. Results show that more than 80% of the total Al and Fe terrigenous bulk content is present in the fluviogenic fraction. In contrast, Ti, K and Si cannot be considered as proxies for one specific source off Senegal. The Al/Ca ratio, recording the continental river runoff, reveals two dry periods from 3010 to 2750 cal a BP and from 1900 to 1000 cal a BP, and two main humid periods from 2750 to 1900 cal a BP and from 1000 to 700 cal a BP. The match between (i) intervals of low river runoff inferred by low Al/Ca values, (ii) reduced river discharge inferred by integrated palynological data from offshore Senegal and (iii) periods of enhanced dune reactivation in Mali confirms this interpretation.
Resumo:
Composition and abundance of modern benthic foraminifers in the littoral zone of the Kunashir Island (South Kuriles) were studied. This littoral zone was examined on the sides of the Sea of Okhotsk, the Pacific Ocean, and the Izmena Bay. In the littoral zone of the Izmena Bay benthic foraminifers were not found. The highest biodiversity and maximal density of foraminifers were observed at a bench among rocks and blocks, in depressions of various size and depth (baths), at places where algae and water plants were attached, on silty sands, and on sands with admixture of broken shells, silt, and clastic matter composing the coast. The lowest density and biodiversity were found in mouths of creeks and rivers, on rock plates free from sediments and attached algae and water plants, as well as in places not protected from wind and wave activity. It was established that on both sides of the Sea of Okhotsk and of the Pacific Ocean foraminiferal complexes vary both in biodiversity and in density of their distribution in the littoral zone.
Resumo:
After death of benthic and planktic foraminifera their tests intensive dissolve in sediments of the upper sublittoral zone (depth 30-60 m) in the highest productivity area of surface water in the northern Peruvian region. Dissolution of fine pelitic ooze is more intensive than of sandy sediments. Rate of dissolution is lower in the lower sublittoral zone (60-200 m) than in the upper part of the zone. Within the upper bathyal zone (300-500 m) dissolution decreases and results to accumulation of carbonate test in this zone. Benthic tests are more abundant than planktic ones. Very poor species composition and a peculiar set of species are characteristic of foraminiferal assemblages found in the sublittoral and upper bathyal zones along the Peruvian coast.
Resumo:
The Arabian Sea off the Pakistan continental margin is characterized by one of the world's largest oxygen minimum zones (OMZ). The lithology and geochemistry of a 5.3 m long gravity core retrieved from the lower boundary of the modern OMZ (956 m water depth) were used to identify late Holocene changes in oceanographic conditions and the vertical extent of the OMZ. While the lower part of the core (535 - 465 cm, 5.04 - 4.45 cal kyr BP, Unit 3) is strongly bioturbated indicating oxic bottom water conditions, the upper part of the core (284 - 0 cm, 2.87 cal kyr BP to present, Unit 1) shows distinct and well-preserved lamination, suggesting anoxic bottom waters. The transitional interval from 465 to 284 cm (4.45 - 2.87 cal kyr BP, Unit 2) contains relicts of lamination which are in part intensely bioturbated. These fluctuations in bioturbation intensity suggest repetitive changes between anoxic and oxic/suboxic bottom-water conditions between 4.45 - 2.87 cal kyr BP. Barium excess (Baex) and total organic carbon (TOC) contents do not explain whether the increased TOC contents found in Unit 1 are the result of better preservation due to low BWO concentrations or if the decreased BWO concentration is a result of increased productivity. Changes in salinity and temperature of the outflowing water from the Red Sea during the Holocene influenced the water column stratification and probably affected the depth of the lower boundary of the OMZ in the northern Arabian Sea. Even if we cannot prove certain scenarios, we propose that the observed downward shift of the lower boundary of the OMZ was also impacted by a weakened Somali Current and a reduced transport of oxygen-rich Indian Central Water into the Arabian Sea, both as a response to decreased summer insolation and the continuous southward shift of the Intertropical Convergence Zone during the late Holocene.
Resumo:
Chemical composition of the upper layer of sediments (0-1 cm) in the Kolvits and Knazhaya inlets, and also in the deep-water part of the Kandalaksha Bay is considered. It is shown that silts are richer in Fe, TOC, and heavy metals, than sands. The highest concentration of these elements is found in sediments under mixing zones of riverine and sea waters. Correlations of P, Zn, Cd, and Cu with iron are high, and correlations of Pb and Cu with organic carbon are also high. Very high concentration of Pb in the Kandalaksha Bay indicate technogenic pollution of sediments. Lignin makes significant contribution to formation of organic matter in the sediments. Composition of lignin in bottom sediments of the Kandalaksha Bay is defined by composition of lignin in soils and aerosols. Vanillin and syringyl structures prevail in molecular composition of lignin in bottom sediments. Their sources are coniferous vegetations, soils, and mosses. Ratios of certain types of phenol compounds indicate pollution of the upper layer of sediments by technogenic lignin. Lead and copper correlate well with this technogenic lignin.
Resumo:
The Mar del Plata Canyon is located at the continental margin off northern Argentina in a key intermediate and deep-water oceanographic setting. In this region, strong contour currents shape the continental margin by eroding, transporting and depositing sediments. These currents generate various depositional and erosive features which together are described as a Contourite Depositional System (CDS). The Mar del Plata Canyon intersects the CDS, and does not have any obvious connection to the shelf or to an onshore sediment source. Here we present the sedimentary processes that act in the canyon and show that continuous Holocene sedimentation is related to intermediate-water current activity. The Holocene deposits in the canyon are strongly bioturbated and consist mainly of the terrigenous "sortable silt" fraction (10-63 µm) without primary structures, similarly to drift deposits. We propose that the Mar del Plata Canyon interacts with an intermediate-depth nepheloid layer generated by the northward-flowing Antarctic Intermediate Water (AAIW). This interaction results in rapid and continuous deposition of coarse silt sediments inside the canyon with an average sedimentation rate of 160 cm/kyr during the Holocene. We conclude that the presence of the Mar del Plata Canyon decreases the transport capacity of AAIW, in particular of its deepest portion that is associated with the nepheloid layer, which in turn generates a change in the contourite deposition pattern around the canyon. Since sedimentation processes in the Mar del Plata Canyon indicate a response to changes of AAIW contour-current strength related to Late Glacial/Holocene variability, the sediments deposited within the canyon are a great climate archive for paleoceanographic reconstructions. Moreover, an additional involvement of (hemi) pelagic sediments indicates episodic productivity events in response to changes in upper ocean circulation possibly associated with Holocene changes in intensity of El Niño/Southern Oscillation.