252 resultados para Plasma-mass-spectrometry
Resumo:
Authigenic ferromanganese manifestations in bottom sediments from two horizons (0-10 and 240-250 cm) located in the low/high bioproductive transitional zone of the Pacific Ocean were studied. In addition two compositionally different types of micronodules, crusts and ferromanganese nodules were detected in the surface horizon (0-1 cm). Three size fractions (50-100, 100-250, and 250-500 µm) of manganese micronodules were investigated. In terms of surface morphology, color, and shape, the micronodules are divided into dull round (MN1) and angular lustrous (MN2) varieties with different mineral and chemical compositions. MN1 are enriched in Mn and depleted in Fe as compared with MN2. Mn/Fe ratio in MN1 varies from 13 to 14. Asbolane-buserite and birnessite are the major manganese minerals in them. MN2 is mainly composed of vernadite with Mn/Fe ratio from 4.3 to 4.8. Relative to MN1, fraction 50-100 µm of MN2 is enriched in Fe (2.6 times), W (1.8), Mo (3.2), Th (2.3), Ce (5.8), and REE (from 1.2 to 1.8). Relative to counterparts from MN1, separate fractions of MN2 are characterized by greater compositional difference. For example, increase in size of micronodules leads to decrease in contents of Fe (by 10 rel. %), Ce (2 times), W (2.1 times), Mo (2.2 times), and Co (1.5 times). At the same time one can see increase in contents of other elements: Th and Cu (2.1 times), Ni (1.9 times), and REE (from 1.2 to 1.6 times). Differences in chemical and mineral compositions of MN1 and MN2 fractions can be related to alternation of oxidative and suboxidative conditions in the sediments owing to input of labile organic matter, which acts as the major reducer, and allochthonous genesis of MN2.
Resumo:
An isotope-geochemical study of Eocene-Oligocene magmatic rocks from the Western Kamchatka-Koryak volcanogenic belt revealed lateral heterogeneity of mantle magma sources in its segments: Western Kamchatka, Central Koryak, and Northern Koryak ones. In the Western Kamchatka segment magmatic melts were generated from isotopically heterogeneous (depleted and/or insignificantly enriched) mantle sources significantly contaminated by quartz-feldspathic sialic sediments; higher 87Sr/86Sr (0.70429-0.70564) and lower 143Nd/144Nd [eNd(T) = 0.06-2.9] ratios in volcanic rocks from the Central Koryak segment presumably reflect contribution of an enriched mantle source; high positive eNd(T) and low 87Sr/86Sr ratios in magmatic rocks from the Northern Koryak segment area indicate their derivation from an isotopically depleted mantle source without significant contamination by sialic or mantle material enriched in radiogenic Sr and Nd. Significantly different contamination histories of Eocene-Oligocene mantle magmas in Kamchatka and Koryakia are related to their different thermal regimes: higher heat flow beneath Kamchatka led to crustal melting and contamination of mantle suprasubduction magmas by crustal melts. Cessation of suprasubduction volcanism in the Western Kamchatka segment of the continental margin belt was possibly related to accretion of the Achaivayam-Valagin terrane 40 Ma ago, whereas suprasubduction activity in the Koryak segment stopped due to closure of the Ukelayat basin in Oligocene.
Resumo:
Re-Os and Pb-Pb isotopic analysis of reduced varved sediments cored in the deeper basin of Saanich Inlet (B.C.) are presented. From core top to 61 cm down-core, spanning approximately the last 100 yrs of sedimentation, 187Os/188Os ratio and Os concentration respectively increase from ~0.8 to ~0.9 and from 55 to 60 ppt, whereas Re concentration decreases from 3600 to 2600 ppt. Re correlates with Corg (R2=0.6) throughout the entire section, whereas Os follows Re and Corg trends deeper down-core, suggesting a decoupling of a Re- and Os-geochemistry during burial and/or very early diagenesis. No systematic compositional differences are observed between seasonal laminae. 204Pb-normalized lead isotope ratios increase from sediment surface down to 7 cm down-core, then decrease steadily to pre-industrial levels at ~50 cm down-core. This pattern illustrates the contamination from leaded gasoline until the recent past. The measured Pb isotopic ratios point primarily toward gasoline related atmospheric lead from the USA. The osmium isotopic values measured are significantly lower than those of modern seawater-Os. In comparison with other anoxic environments, the osmium content of Saanich Inlet sediments is low, and its Os isotopic composition suggests significant inputs from unradiogenic sources (detrital and/or dissolved). Ultramafic lithologies in the watershed of the Fraser River are suspected to contribute to sedimentary inputs as well as to the input of dissolved unradiogenic osmium in the water of Saanich Inlet. The presence of some unradiogenic Os from anthropogenic contamination cannot be discounted near the core top, but since deeper, pre-anthropogenic levels also yielded unradiogenic Os results, one is led to conclude that the overall low 187Os/188Os ratios result from natural geochemical processes. Thus, the bulk sediment of Saanich Inlet does not appear to record 187Os/188Os composition of the marine end-member of the only slightly below normal salinity, fjord water. The low seawater-derived Os content of the sediment, coupled with unradiogenic Os inputs from local sources, explains the overall low isotopic values observed. As a consequence, such near-shore anoxic sediments are unlikely to record changes in the past ocean Os isotopic composition.
Resumo:
The sensitivities of benthic foraminiferal Mg/Ca and Li/Ca to bottom water temperature and carbonate saturation state have recently been assessed. Here we present a new approach that uses paired Mg/Ca and Li/Ca records to calculate simultaneous changes in temperature and saturation state. Using previously published records, we first use this approach to document a cooling of deep ocean waters associated with the establishment of the Antarctic ice sheet at the Eocene-Oligocene climate transition. We then apply this approach to new records of the Middle Miocene Climate Transition from ODP Site 761 to estimate variations in bottom water temperature and the oxygen isotopic composition of seawater. We estimate that the oxygen isotopic composition of seawater varied by ~1 per mil between the deglacial extreme of the Miocene Climatic Optimum and the glacial maximum following the Middle Miocene Climate Transition, indicating large amplitude variations in ice volume. However, the longer-term change between 15.3 and 12.5 Ma is marked by a ~1°C cooling of deep waters, and an increase in the oxygen isotopic composition of seawater of ~0.6 per mil. We find that bottom water saturation state increased in the lead up to the Middle Miocene Climate Transition and decreased shortly after. This supports decreasing pCO2 as a driver for global cooling and ice sheet expansion, in agreement with existing boron isotope and leaf stomatal index CO2 records but in contrast to the published alkenone CO2 records.
Resumo:
Over the past decade, the ratio of Mg to Ca in foraminiferal tests has emerged as a valuable paleotemperature proxy. However, large uncertainties remain in the relationships between benthic foraminiferal Mg/Ca and temperature. Mg/Ca was measured in benthic foraminifera from 31 high-quality multicore tops collected in the Florida Straits, spanning a temperature range of 5.8° to 18.6°C. New calibrations are presented for Uvigerina peregrina, Planulina ariminensis, Planulina foveolata, and Hoeglundina elegans. The Mg/Ca values and temperature sensitivities vary among species, but all species exhibit a positive correlation that decreases in slope at higher temperatures. The decrease in the sensitivity of Mg/Ca to temperature may potentially be explained by Mg/Ca suppression at high carbonate ion concentrations. It is suggested that a carbonate ion influence on Mg/Ca may be adjusted for by dividing Mg/Ca by Li/Ca. The Mg/Li ratio displays stronger correlations to temperature, with up to 90% of variance explained, than Mg/Ca alone. These new calibrations are tested on several Last Glacial Maximum (LGM) samples from the Florida Straits. LGM temperatures reconstructed from Mg/Ca and Mg/Li are generally more scattered than core top measurements and may be contaminated by high-Mg overgrowths. The potential for Mg/Ca and Mg/Li as temperature proxies warrants further testing.
Resumo:
Middle Cenozoic evolution of magmatism in the Schmidt Peninsula between 37 and 25 Ma began with eruptions of subalkaline and moderately alkaline andesite, latite, trachyandesite, and trachyrhyolite lavas and ended with subvolcanic intrusions of highly alkaline strongly undersaturated essexites. According to trace element data magmatism evolved from melting of a mantle source in the zone of ocean-continent plate convergence to small degree partial melting in the lithospheric mantle at the final stage. This succession is generally typical for Late Cenozoic continental-margin magmatism in the Southeast Russia. Similarity in the Middle and Late Cenozoic stages of magmatism is an evidence for their individual significance.
Resumo:
This paper reports data including new analyses of contents of Ni, Co, V, Mo, Fe, Mn, Zn, Ba, Sc, Y, Cd, Rb, Cs, and W in bottom sediments of the Deryugin Basin. Features of chemical element distribution in the bottom area were identified and zones of maximum accumulation of major and trace elements were allocated. A correlation between the elements was shown.
Resumo:
Site 1276, Leg 210 of the Ocean Drilling Program, was located on the Newfoundland margin in a seismically-defined ~128 Ma "transitional" crust just west of the presumed oceanic crust, and the M3 magnetic anomaly. The goal of drilling on this non-volcanic margin was to study the rifting, nature of basement, and post-rift sedimentation in the Newfoundland-Iberia rift. Drilling of this 1739 m hole was terminated 90-160 m above basement, in the lower of a doublet of alkaline diabase sills. We have carried out geochemical studies of the sill complex, in the hopes that they will provide proxy information regarding the nature of the underlying basement. Excellent 40Ar/39Ar plateau ages were obtained for the two sills: upper sill ~105.3 Ma; lower sill ~97.8 Ma. Thus the sills are substantially younger than the presumed age of the seafloor at site 1276 (~128 Ma), and were intruded beneath substantial sediment overburden (250 m for the upper, older sill, and 575 m for the lower younger sill). While some of the geochemistry of the sills has been compromised by alteration, the "immobile" trace elements show these sills to be hawaiites, differentiated from an enriched alkaline or basanitic parentage. Sr, Nd and Pb isotopes are suggestive of an enriched hotspot/plume mantle source, with a possible "added" component of continental material. These sills unequivocally were not derived from typical MORB (asthenospheric) upper mantle.
Resumo:
Alpine glacier samples were collected in four contrasting regions to measure supraglacial dust and debris geochemical composition. A total of 70 surface glacier ice, snow and debris samples were collected in 2009 and 2010 in Svalbard, Norway, Nepal and New Zealand. Trace elemental abundances in snow and ice samples were measured via inductively coupled plasma mass spectrometry (ICP-MS). Supraglacial debris mineral, bulk oxide and trace element composition were determined via X-ray diffraction (XRD) and X-ray fluorescence spectroscopy (XRF). A total of 45 elements and 10 oxide compound abundances are reported. The uniform data collection procedure, analytical measurement methods and geochemical comparison techniques are used to evaluate supraglacial dust and debris composition variability in the contrasting glacier study regions. Elemental abundances revealed sea salt aerosol and metal enrichment in Svalbard, low levels of crustal dust and marine influences to southern Norway, high crustal dust and anthropogenic enrichment in the Khumbu Himalayas, and sulfur and metals attributed to quiescent degassing and volcanic activity in northern New Zealand. Rare earth element and Al/Ti elemental ratios demonstrated distinct provenance of particulates in each study region. Ca/S elemental ratio data showed seasonal denudation in Svalbard and Norway. Ablation season atmospheric particulate transport trajectories were mapped in each of the study regions and suggest provenance pathways. The in situ data presented provides first order glacier surface geochemical variability as measured from four diverse alpine glacier regions. This geochemical surface glacier data is relevant to glaciologic ablation rate understanding as well as satellite atmospheric and land-surface mapping techniques currently in development.
Resumo:
Peridotite samples recovered from IODP Site U1309 at the Atlantis Massif in the Mid-Atlantic Ridge were examined to understand magmatic processes for the oceanic core complex formation. Original peridotite was fragmented, and the limited short peridotite intervals are now surrounded by a huge gabbro body probably formed by late-stage melt injections. Each peridotite interval has various petrographical and geochemical features. A spinel harzburgite in contact with gabbro shows evidence of limited melt penetrations causing gradual compositional change, in terms of trace-element compositions of pyroxenes, as well as modal change near the boundary. Geochemistry of clinopyroxenes with least melt effects indicates that the harzburgite is originally mantle residue formed by partial melting under polybaric conditions, and that such a depleted peridotite is one of the components of the oceanic core complex. Some of plagioclase-bearing peridotites, on the other hand, have more complicated origin. Although their original features were partly overprinted by the injected melt, the original peridotites, both residual and non-residual materials, were possibly derived from the upper mantle. This suggests that the melt injected around an upper mantle region or into mantle material fragments. The injected melt was possibly generated at the ridge-segment center and, then, moved and evolved toward the segment end beneath the oceanic core complex.
Resumo:
In the southeast of the Bolshoi Lyakhovsky Island there are outcrops of tectonic outliers composed of low-K medium-Ti tholeiitic basic rocks represented by low altered pillow basalts, as well as by their metamorphosed analogs: amphibolites and blueschists. The rocks are depleted in light rare-earth elements and were melted out of a depleted mantle source enriched in Th, Nb, and Zr also contributed to the rock formation. The magma sources were not affected by subduction-related fluids or melts. The rocks were part of the Jurassic South Anyui ocean basin crust. The blueschists are the crust of the same basin submerged beneath the more southern Anyui-Svyatoi Nos arc to depth of 30-40 km. Pressure and temperature of metamorphism suggest a setting of "warm" subduction. Mineral assemblages of the blueschists record time of a collision of the Anyui-Svyatoi Nos island arc and the New Siberian continental block expressed as a counter-clockwise PT trend. The pressure jump during the collision corresponds to heaping of tectonic covers above the zone of convergence 12 km in total thickness. Ocean rocks were thrust upon the margin of the New Siberian continental block in late Late Jurassic - early Early Cretaceous and mark the NW continuation of the South Anyui suture, one of the main tectonic sutures of the Northeastern Asia.
Resumo:
During the mid-Cretaceous period, the global subsurface oceans were relatively warm, but the origins of the high temperatures are debated. One hypothesis suggests that high sea levels and the continental configuration allowed high-salinity waters in low-latitude epicontinental shelf seas to sink and form deep-water masses (Brass et al., 1982, doi:10.1038/296620a0; Arthur and Natland, 1979; Chamberlin, 1906). In another scenario, surface waters in high-latitude regions, the modern area of deep-water formation, were warmed through greenhouse forcing (Bice and Marotzke, 2001, doi:10.1029/2000JC000561), which then propagated through deep-water circulation. Here, we use oxygen isotopes and Mg/Ca ratios from benthic foraminifera to reconstruct intermediate-water conditions in the tropical proto-Atlantic Ocean from 97 to 92 Myr ago. According to our reconstruction, intermediate-water temperatures ranged between 20 and 25 °C, the warmest ever documented for depths of 500-1,000 m. Our record also reveals intervals of high-salinity conditions, which we suggest reflect an influx of saline water derived from epicontinental seas around the tropical proto-North Atlantic Ocean. Although derived from only one site, our data indicate the existence of warm, saline intermediate waters in this silled basin. This combination of warm saline intermediate waters and restricted palaeogeography probably acted as preconditioning factors for the prolonged period of anoxia and black-shale formation in the equatorial proto-North Atlantic Ocean during the Cretaceous period.