172 resultados para Pearl River Mouth basin


Relevância:

40.00% 40.00%

Publicador:

Resumo:

While large-scale transverse drainages (TDs) such as those of the Susquehanna River above Harrisburg, PA, have been recognized since the 19th century, there have been no systematic surveys done of TDs since that of Ver Steeg's in 1930. Here, the results are presented of a topographic and statistical analysis of TDs in the Susquehanna River basin using Google Earth and associated overlays. 653 TDs were identified in the study area, 95% of which contain streams with discharges of less than 10 m3/s. TD depths ranged from a 23 m deep water gap near Blain, PA, to the 539 m deep gorge of the Juniata River through Jacks Mountain. Although TD depth tended to increase with stream size, many small streams were located in deep gaps, and eight streams with discharges of 10 m3/s or less were found in gorges whose depths matched or exceeded the deepest TD of the Susquehanna, the largest stream in the basin. Streams of less than 10 m3/s made up the majority of TDs regardless of the rock type capping the breached structure. Overall, TDs through sandstone-capped ridges were deeper than those topped by shales, and TDs in both sandstones and shales displayed a lognormal distribution of depths, which may be indicative of a preferred value. Stream flow direction was primarily perpendicular to local structural strike, with 47% of streams flowing NW and 53% flowing SE. 19% of the TDs were found to be in alignment with at least one other TD, with aligned segment lengths ranging from .5 to 14.8 km. The majority of TDs were in rocks of Paleozoic age. The techniques described here allow the frequency and distribution of TDs to be quantified so that they can be integrated into models of basin evolution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Paleosols crop out in the Sukhona River valley as several members up to 10 m thick embedded into the Salarevo Formation sediments. Principal characteristics of the paleosols include a dense network of root channels, indications of eluvial gley alteration, redistribution and formation of secondary carbonates represented by several generations, and formation of block-prismatic soil structure with specific clayey films at structural jointing faces. The paleosols are divided into a number of genetically interrelated horizons (from top to bottom): presumably organogenic accumulation (AElg), eluvial gley horizon (Elg), illuvial horizons (B1 and B2), illuvial gley horizon (Bg), and transitional horizons (ElBg and BElg). The paleosols formed under conditions of a semiarid climate with sharp seasonal or secular and multisecular oscillations of atmospheric precipitation. Such soils point to specific ecological environments existed in the northern semiarid belt of the Earth before the greatest (in Phanerozoic) biospheric crisis at the Permian-Triassic boundary.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this paper is to find out if there is a significant difference in using NDVI dataset processed by harmonic analysis method to evaluate its dynamic and response to climate change, compared with the original data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study describes detailed partitioning of phytomass carbon (C) and soil organic carbon (SOC) for four study areas in discontinuous permafrost terrain, Northeast European Russia. The mean aboveground phytomass C storage is 0.7 kg C/m**2. Estimated landscape SOC storage in the four areas varies between 34.5 and 47.0 kg C/m**2 with LCC (land cover classification) upscaling and 32.5-49.0 kg C/m**2 with soil map upscaling. A nested upscaling approach using a Landsat thematic mapper land cover classification for the surrounding region provides estimates within 5 ± 5% of the local high-resolution estimates. Permafrost peat plateaus hold the majority of total and frozen SOC, especially in the more southern study areas. Burying of SOC through cryoturbation of O- or A-horizons contributes between 1% and 16% (mean 5%) of total landscape SOC. The effect of active layer deepening and thermokarst expansion on SOC remobilization is modeled for one of the four areas. The active layer thickness dynamics from 1980 to 2099 is modeled using a transient spatially distributed permafrost model and lateral expansion of peat plateau thermokarst lakes is simulated using geographic information system analyses. Active layer deepening is expected to increase the proportion of SOC affected by seasonal thawing from 29% to 58%. A lateral expansion of 30 m would increase the amount of SOC stored in thermokarst lakes/fens from 2% to 22% of all SOC. By the end of this century, active layer deepening will likely affect more SOC than thermokarst expansion, but the SOC stores vulnerable to thermokarst are less decomposed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We analyzed the distribution of branched tetraether membrane lipids derived from soil bacteria in a marine sediment record that was recovered close to the Congo River outflow, and the results enabled us to reconstruct large-scale continental temperature changes in tropical Africa that span the past 25,000 years. Tropical African temperatures gradually increased from ~21° to 25°C over the last deglaciation, which is a larger warming than estimated for the tropical Atlantic Ocean. A direct comparison with sea-surface temperature estimates from the same core revealed that the land-sea temperature difference was, through the thermal pressure gradient, an important control on central African precipitation patterns.